Edmund K. Burke
A classification of hyper-heuristic approaches: Revisited
Burke, Edmund K.; Hyde, Matthew R.; Kendall, Graham; Ochoa, Gabriela; �zcan, Ender; Woodward, John R.
Authors
Matthew R. Hyde
Graham Kendall
Gabriela Ochoa
Professor Ender Ozcan ender.ozcan@nottingham.ac.uk
PROFESSOR OF COMPUTER SCIENCE AND OPERATIONAL RESEARCH
John R. Woodward
Abstract
© Springer International Publishing AG, part of Springer Nature 2019. Hyper-heuristics comprise a set of approaches that aim to automate the development of computational search methodologies. This chapter overviews previous categorisations of hyper-heuristics and provides a unified classification and definition. We distinguish between two main hyper-heuristic categories: heuristic selection and heuristic generation. Some representative examples of each category are discussed in detail and recent research trends are highlighted.
Citation
Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Özcan, E., & Woodward, J. R. (2019). A classification of hyper-heuristic approaches: Revisited. In Handbook of metaheuristics (453-477). Springer Publishing Company. https://doi.org/10.1007/978-3-319-91086-4_14
Acceptance Date | Oct 1, 2018 |
---|---|
Online Publication Date | Sep 21, 2018 |
Publication Date | Jan 1, 2019 |
Deposit Date | Oct 14, 2018 |
Publicly Available Date | Oct 15, 2018 |
Journal | International Series in Operations Research and Management Science |
Electronic ISSN | 2214-7934 |
Publisher | Springer Publishing Company |
Volume | 272 |
Pages | 453-477 |
Series Title | International Series in Operations Research & Management Science |
Series Number | 272 |
Series ISSN | 2214-7934 |
Book Title | Handbook of metaheuristics |
Chapter Number | 14 |
ISBN | 9783319910857 |
DOI | https://doi.org/10.1007/978-3-319-91086-4_14 |
Public URL | https://nottingham-repository.worktribe.com/output/1156091 |
Publisher URL | https://link.springer.com/chapter/10.1007%2F978-3-319-91086-4_14 |
Additional Information | Burke E.K., Hyde M.R., Kendall G., Ochoa G., Özcan E., Woodward J.R. (2019) A Classification of Hyper-Heuristic Approaches: Revisited. In: Gendreau M., Potvin JY. (eds) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol 272. Springer, Cham |
Contract Date | Oct 14, 2018 |
Files
HHClaA Classification of Hyper-Heuristic Approaches: Revisited
(296 Kb)
PDF
You might also like
CUDA-based parallel local search for the set-union knapsack problem
(2024)
Journal Article
A benchmark dataset for multi-objective flexible job shop cell scheduling
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search