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Abstract Hyper-heuristics comprise a set of approaches that aim to automate the de-
velopment of computational search methodologies, initially to address operational
research problems but more recently venturing into new domains such as bioinfor-
matics, strategies for games, and software engineering. This chapter overviews pre-
vious categorisations of hyper-heuristics and provides a unified classification and
definition. We distinguish between two main hyper-heuristic categories: heuristic
selection and heuristic generation. Some representative examples of each category
are discussed in detail, and recent research trends are highlighted. Our goals are to
clarify the main features of existing techniques and to suggest new directions for
hyper-heuristic research.
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1 Introduction

The current state of the art in hyper-heuristic research comprises a set of approaches
that share the common goal of automating the design and adaptation of heuristic
methods in order to solve computational search problems. The motivation behind
these approaches is to raise the level of generality at which search methodologies
can operate [13]. The term hyper-heuristic was first used in 1997 [31] to describe
a protocol that combines several artificial intelligence methods in the context of
automated theorem proving. The term was independently used in 2000 [29] to de-
scribe ‘heuristics to choose heuristics’ in the context of combinatorial optimisation.
In this context a hyper-heuristic is a high-level approach that, given a particular
problem instance and a number of low-level heuristics, can select and apply an ap-
propriate low-level heuristic at each decision point [13, 75]. The idea of automating
the heuristic design process, however, is not new. Indeed, it can be traced back to
the early 1960s [30, 37, 38], and was independently developed by a number of au-
thors during the 1990s [35, 44, 46, 62, 91, 96]. Some historical notes, and a brief
overview of early approaches can be found in [13] and [75], respectively. A more
recent research trend in hyper-heuristics attempts to automatically generate new
heuristics suited to a given problem or class of problems. This is typically done by
combining, through the use of genetic programming for example, components or
building-blocks of human designed heuristics [14].

We differentiate between the terms heuristic, metaheuristic and hyper-heuristic.
A heuristic is a “rule of thumb” offering guidance for finding good solutions accord-
ing to domain knowledge. Two main types of search heuristics can be distinguished,
perturbative or local search heuristics, which operate on fully instantiated candidate
solutions, and constructive heuristics which iteratively expand partial candidate so-
lutions. Metaheuristics are search methodologies that coordinate local search and
higher-level strategies to perform a robust search on a solution space and escape lo-
cal optima. Hyper-heuristics are high-level strategies that operate on a search space
of heuristics rather than directly on a search space of solutions.

A variety of hyper-heuristic approaches have been proposed in the literature. An
introduction to the area appeared in the 2003 edition of the Handbook of Meta-
heuristics [13]. The present chapter updates our previous version [15], which sug-
gested a unified classification and definition of hyper-heuristics. The proposed clas-
sification inspired a thorough survey article appearing in 2013 [12], and has been
widely adopted by the research community.

The next section outlines previous classifications of hyper-heuristics. Section 3
proposes our unified classification and definition. Sections 4 and 5, describe the
main categories of the proposed classification. They discuss some representative
examples, and highlight current research trends. Finally, section 6 summarises our
categorisation and suggests future research directions.
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2 Previous classifications

In [90], hyper-heuristics are categorised into two types: (i) with learning, and (ii)
without learning. Hyper-heuristics without learning include approaches that use
several heuristics (neighbourhood structures), but select the heuristics to call ac-
cording to a predetermined sequence. Therefore, this category contains approaches
such as variable neighbourhood search. The hyper-heuristics with learning include
methods that dynamically change the preference of each heuristic based on their
historical performance, guided by some learning mechanism. As discussed in [90],
hyper-heuristics can be further classified with respect to the learning mechanism em-
ployed, and a distinction is made between approaches which use a genetic algorithm,
from those which use other mechanisms. This is because many hyper-heuristics to
date have been based on genetic algorithms. In these genetic algorithm-based hyper-
heuristics the idea is to evolve the solution methods, not the solutions themselves.

In [75], hyper-heuristics are classified into those which are constructive and those
which are local search methods. Constructive hyper-heuristics build a solution in-
crementally by adaptively selecting heuristics, from a pool of constructive heuris-
tics, at different stages of the construction process. Local search hyper-heuristics, on
the other hand, start from a complete initial solution and iteratively select, from a set
of neighbourhood structures, appropriate heuristics to lead the search in a promising
direction.

When genetic programming started being used for hyper-heuristic research in
the late 2000’s (see [14] for an overview), a new class of hyper-heuristics emerged.
This class was explicitly and independently mentioned in [5] and [20]. In the first
class of heuristics, or ‘heuristics to choose heuristics’, the framework is provided
with a set of pre-existing, generally widely known heuristics for solving the target
problem. In contrast, in the second class, the aim is to generate new heuristics from
a set of building-blocks, components or search trail of known heuristics, which are
given to the framework. Therefore, the process requires, as in the first class of hyper-
heuristics, the selection of a suitable set of heuristics known to be useful in solving
the target problem. However, instead of supplying these directly to the framework,
the heuristics are first decomposed into their basic components. Genetic program-
ming hyper-heuristic researchers [5, 14, 20] have also made the distinction between
‘disposable’ and ‘reusable’ heuristics. A disposable heuristic is created just for one
problem, and is not intended for use on unseen problems. Alternatively, the heuristic
may be created for the purpose of re-using it on new unseen problems of a certain
class.

In [27], hyper-heuristics are classified into four categories: (i) hyper-heuristics
based on the random choice of low-level heuristics, (ii) greedy and peckish hyper-
heuristics, which require preliminary evaluation of all or a subset of the heuris-
tics in order to select the best performing one, (iii) metaheuristics based hyper-
heuristics, and (iv) hyper-heuristics employing learning mechanisms to manage low
level heuristics.
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3 The proposed classification and definition

Building upon some of the previous classifications discussed above, and realising
that hyper-heuristics lie at the interface of optimisation and machine learning re-
search, we propose a general classification of hyper-heuristics according to two con-
siderations: (i) the nature of the heuristic search space, and (ii) the source of feed-
back during learning. These considerations are orthogonal in that different heuristic
search spaces can be combined with different sources of feedback, and thus different
machine learning techniques.
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Fig. 1 A classification of hyper-heuristic approaches, according to two considerations: (i) the na-
ture of the heuristic search space, and (ii) the source of feedback during learning.

The most fundamental hyper-heuristic categories from the previous classifica-
tions, are those represented by the processes of:

• Heuristic selection: Methodologies for choosing or selecting existing heuristics
• Heuristic generation: Methodologies for generating new heuristics (from primi-

tive components or observed search trails of existing heuristics)

There is no reason why the higher level strategy (for selecting or generating
heuristics) should be restricted to be a heuristic. Indeed, sophisticated knowledge-
based techniques such as case-based reasoning have been employed in this way for
university timetabling [25]. This leads us to propose the following more general
definition of the term ‘hyper-heuristic’ which is intended to capture the idea of a
method for automating the heuristic design and selection process:

A hyper-heuristic is an automated methodology for selecting or generating
heuristics to solve computational search problems.
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From this definition, there are two clear categories of hyper-heuristics: heuristic
selection and heuristic generation. They form the first level in our first consideration
(the nature of the search space). The second level in this consideration corresponds
to the distinction between constructive and local search hyper-heuristics, also dis-
cussed in section 2. Notice that this categorisation is concerned with the nature of
the low-level heuristics used in the hyper-heuristic framework. Our classification
uses the terms construction and perturbation to refer to these classes of low-level
heuristics. Sections 4 and 5 describe these categories in more detail, discussing some
concrete examples of recent approaches that can be found in the literature.

There is an underlying theme to these two clear categories of hyper-heuristics. In
both cases a high-level hyper-heuristic operates on a set of heuristics which in turn
operate on the solution space. In the case of selection, we are choosing from a set of
atomic predefined heuristics. In the case of generation, we are operating on a space
of heuristic components.

We consider a hyper-heuristic to be a learning algorithm when it uses feedback
information on the performance of the low-level heuristics from the search process.
A non-learning hyper-heuristic selects a heuristic to apply uniformly at random from
the existing pool, without keeping a record of their previous performance. Accord-
ing to the source of the feedback during learning about the low-level heuristics per-
formance, we propose a distinction between online and offline learning. Notice that
in the context of heuristic generation methodologies, an example of which is genetic
programming-based hyper-heuristics (discussed in section 2), the notions of dispos-
able and reusable have been used to refer to analogous ideas to those of online and
offline learning, as described below:

Online learning hyper-heuristics: The learning takes place while the algorithm is
solving an instance of a problem. Therefore, task-dependent local properties can
be used by the high-level strategy to determine the appropriate low-level heuristic
to apply.

Offline learning hyper-heuristics: The idea is to gather knowledge in the form of
rules or programs, from a set of representative training instances, that we would
expect to generalise to the process of solving unseen instances.

The proposed classification of hyper-heuristic approaches can be summarised as
follows (also see figure 1):

• With respect to the nature of the heuristic search space

– Heuristic selection methodologies: Produce combinations of pre-existing
construction or perturbation heuristics.

– Heuristic generation methodologies: Generate new heuristic methods using
basic components/building-blocks or search trail of pre-existing construction
or perturbation heuristics.

• With respect to the source of feedback during learning

– Online learning hyper-heuristics: Learn while solving a given instance of a
problem.
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– Offline learning hyper-heuristics: Learn, from a set of training instances, a
method that would generalise to unseen instances.

– No-learning hyper-heuristics: Do not use previous information from the
search process on the low-level heuristic performance.

These categories reflect the most commom research trends. However, there
are methodologies that can cut across categories. For example, we can see hy-
brid methodologies that combine constructive with perturbation heuristics [42], or
heuristic selection with heuristic generation [54, 61, 74, 84].

4 Heuristic selection methodologies

This section is not intended to be an exhaustive survey. The intention is to present a
few examples to give the reader a flavour of the research that has been undertaken
in this area. Some research trends are also highlighted.

4.1 Approaches based on construction low-level heuristics

These approaches build a solution incrementally. Starting with an empty solution,
the goal is to intelligently select and use construction heuristics to gradually build
a complete solution. The hyper-heuristic framework is provided with a set of pre-
existing (generally problem specific) construction heuristics, and the challenge is
to select the heuristic that is somehow the most suitable for the current problem
state. This process continues until the final state (a complete solution) is obtained.
Notice that there is a natural end to the construction process, that is, when a com-
plete solution is reached. Therefore, the sequence of heuristic choices is finite and
determined by the size of the underlying combinatorial problem. Furthermore, there
is the interesting possibility of learning associations between partial solution stages
and adequate heuristics for those stages.

Several approaches have been proposed to generate efficient hybridisations of
existing construction heuristics in domains such as bin packing [60, 78], timetabling
[23, 25, 71, 76, 77], production scheduling [97], and stock cutting [94, 95]. Both
online and offline machine learning approaches have been investigated. Examples
of online approaches are the use of metaheuristics in a search space of construction
heuristics. For example, genetic algorithms [36, 46, 96, 97], tabu search [23] and
other single-point based search strategies [73]. For this type of hyper-heuristic, the
structure of the heuristic search space or hyper-heuristic landscape has been studied
[66]. Examples of offline techniques are the use of learning classifier systems [60,
78], messy genetic algorithms [76, 77, 95] and case-based reasoning [25].
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4.1.1 Representative examples

Two hyper-heuristics based on construction heuristics are described here in more
detail. The first approach is online and is based on graph-colouring heuristics for
timetabling problems, whilst the second is offline and is based on bin packing
heuristics.

Graph-colouring hyper-heuristic for timetabling: In educational timetabling,
a number of courses or exams need to be assigned to a number of timeslots, subject
to a set of both hard and soft constraints. Timetabling problems can be modelled as
graph colouring problems, where nodes in the graph represent events (e.g. exams),
and edges represent conflicts between events. Graph heuristics in timetabling use
the information in the graph to order the events by their characteristics (e.g. num-
ber of conflicts with other events or the degree of conflict), and assign them one by
one into the timeslots. These characteristics suggest how difficult it is to schedule
the events. Therefore, the most difficult event, according to the corresponding or-
dering strategy, will be assigned first. The graph-based hyper-heuristic developed in
[23], implements the following five graph colouring-based heuristics, plus a random
ordering heuristic:

• Largest Degree (LD): Orders the events in decreasing order based on the number
of conflicts the event has with the others events.

• Largest Weighted Degree (LW): The same as LD, but the events are weighted by
the number of students involved.

• Colour Degree (CD): Orders the events in decreasing order in terms of the num-
ber of conflicts (events with common students involved) each event has with
those already scheduled.

• Largest Enrolment (RO): Orders the events in decreasing order based on the num-
ber of enrolments.

• Saturation Degree (SD): Orders the events in increasing order based on the num-
ber of timeslots available for each event in the timetable at that time.

A candidate solution in the heuristic search space corresponds to a sequence
(list) of these heuristics. The solution (timetable) construction is an iterative process
where, at the ith iteration, the ith graph-colouring heuristic in the list is used to order
the events not yet scheduled at that step, and the first e events in the ordered list are
assigned to the first e least-cost timeslots in the timetable (see figure 2).

Tabu Search is employed as the high-level search strategy for producing good
sequences of the low-level heuristics. Each heuristic list produced by tabu search is
evaluated by sequentially using the individual heuristics to order the unscheduled
events, and thus construct a complete timetable. Each heuristic in the list is used
to schedule a number e of events. Therefore, the length of the heuristic list is n/e
where n is the number of events to be scheduled. Values in the range of e = 1, . . . ,5
were tested (details can be found in [23]). This work also highlights the existence
of two search spaces in constructive hyper-heuristics (the heuristic space and the
problem solution). The approach was tested on both course and exam timetabling
benchmark instances with competitive results. This graph-based hyper-heuristic was
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Fig. 2 A solution (timetable) is constructed by iteratively considering each heuristic in the list, and
using it to order the events not yet scheduled. The first e events (in the figure e = 5) in the resulting
ordering are assigned to the first e least-cost timeslots in the timetable.

later extended in [73] where a formal definition of the framework is presented. The
authors also compare the performance of several high-level heuristics that operate
on the search space of heuristics. Specifically, a steepest descent method, iterated
local search and variable neighbourhood search are implemented and compared to
the previously implemented tabu search. The results suggest that the choice of a
particular neighbourhood structure on the heuristic space is not crucial to the per-
formance. Moreover, iterative techniques such as iterated local search and variable
neighbourhood search, were found to be more effective for traversing the heuristic
search space than more elaborate metaheuristics such as tabu search. The authors
suggest that the heuristic search space is likely to be smooth and to contain large
plateaus (i.e. areas where different heuristic sequences can produce similar quality).
The work also considers hybridisations of the hyper-heuristic framework with local
search operating on the solution space. This strategy greatly improves the perfor-
mance of the overall system, making it competitive with state-of-the-art approaches
on the studied benchmark instances.

In a further study [66], the notion of fitness landscapes is used to analyse the
search space of graph colouring heuristics. The study confirms some observations
about the structure of the heuristic search space discussed in [73]. Specifically, these
landscapes have a high level of neutrality (i.e. the presence of plateaus). Further-
more, although rugged, they have the encouraging feature of a globally convex or
big valley structure, which indicates that an optimal solution would not be isolated
but surrounded by many local minima. The study also revealed a positional bias
in the search space comprising sequences of heuristics. Specifically, changes in the
earlier positions of a heuristic sequence have a larger impact on the solution qual-
ity than changes in the later positions. This is because early decisions (heuristic
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choices) in a construction process have a higher impact on the overall quality of the
solution than later decisions.

Classifier system hyper-heuristic for bin packing: Classifier systems are rule-
based learning systems that evolve fixed length stimulus-response rules. The rules
are encoded as ternary strings, made of the symbols {0,1,#}, and have an associated
strength. The system operates in two phases. First, the population of classification
rules is applied to some task; and secondly, a genetic algorithm generates a new
population of rules by selection based on strength, and by the application of stan-
dard genetic operators. Calculating the strength of each rule is a credit assignment
problem, which refers to determining the contribution made by each sub-component
or partial solution, in decomposable problems being solved collectively by a set of
partial solutions.

In [78], a classifier system was used in the domain of one-dimensional bin pack-
ing, to learn a set of rules that associate characteristics of the current state of a
problem with different low-level construction heuristics. In the one-dimensional bin
packing problem, there is an unlimited supply of bins, each with capacity c. A set of
n items is to be packed into the bins, the size of each item is given, and items must
not overfill any bin. The task is to minimise the total number of bins required.

The set of rules evolved by the classifier system is used as follows: given the ini-
tial problem characteristics P, a heuristic H is chosen to pack an item, thus gradually
altering the characteristics of the problem that remains to be solved. At each step a
rule appropriate to the current problem state P′ is selected, and the process continues
until all items have been packed. For the training phase a total of 890 benchmark in-
stances from the literature were used. The authors chose four bin packing heuristics
from the literature, the selection being based on those that produced the best results
on the studied benchmark set. These heuristics were as follows:

• Largest-Fit-Decreasing: Items are taken in order of size, largest first, and put in
the first bin where they fit (a new bin is opened if necessary, and effectively all
bins stay open).

• Next-Fit-Decreasing: An item is placed in the current bin if possible, or else a
new bin is opened into which the piece is placed. This new bin becomes the
current bin.

• Djang and Finch’s (DJD): A heuristic that considers combinations of up to three
items to completely fill partially full bins.

• A variation of DJD: A variation of the previous heuristic that considers combi-
nations of up to five items to completely fill partially full bins.

A simplified description of the current state of the problem is proposed. This de-
scription considers the number of items remaining to be packed, and calculates the
percentage of items in each of four size ranges (huge, large, medium, and small);
where the size of the items is judged in proportion to the bin size. The approach
used single-step environments, meaning that rewards were available after each ac-
tion had taken place. The classifier system was trained on a set of example problems
and showed good generalisation to unseen problems. In [60], the classifier system
approach is extended to multi-step environments. The authors test several reward
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schemes in combination with alternate exploration/exploitation ratios, and several
sizes and types of multi-step environments. Again, the approach was tested using a
large set of one-dimensional benchmark bin packing problems. The classifier sys-
tem was able to generalise well and create solution processes that performed well
on a large set of NP-hard benchmark instances. The authors report that multi-step
environments can obtain better results than single-step environments at the expense
of a higher number of training cycles.

4.2 Approaches based on perturbation low-level heuristics

These approaches start with a complete solution, generated either randomly or using
simple construction heuristics, and thereafter try to iteratively improve the current
solution. The hyper-heuristic framework is provided with a set of neighbourhood
structures and/or simple local searchers, and the goal is to iteratively select and ap-
ply them to the current complete solution. This process continues until a stopping
condition has been met. Notice that these approaches differ from those based on
construction heuristics, in that they do not have a natural termination condition. The
sequence of heuristic choices can, in principle, be arbitrarily extended. This class of
hyper-heuristics has the potential to be applied successfully to different combinato-
rial optimisation problems, since general neighbourhood structures or simple local
searchers can be made available. Hyper-heuristics based on perturbation have been
applied to personnel scheduling [22, 29], timetabling [6, 9, 21, 71, 82, 87, 88], shelf
space allocation [7, 8], packing [6, 33] and vehicle routing problems [42, 72, 84].

So far, the approaches that combine perturbation low-level heuristics in a hyper-
heuristic framework use online learning, in that they attempt to adaptively solve a
single instance of the problem under consideration. Furthermore, the majority of the
proposed approaches are single-point algorithms, in that they maintain a single in-
cumbent solution in the solution space. Some approaches that maintain a population
of points in the heuristic space have been attempted [28, 99].

As suggested in [68, 69] perturbation hyper-heuristics can be separated into two
processes: (i) (low-level) heuristic selection, and (ii) move acceptance strategy. The
authors classify hyper-heuristics with respect to the nature of the heuristic selec-
tion and move acceptance components. The heuristic selection can be done in a
non-adaptive (simple) way: either randomly or along a cycle, based on a prefixed
heuristic ordering [29]. No learning is involved in these approaches. Alternatively,
the heuristic selection may incorporate an adaptive (or on-line learning) mechanism
based on the probabilistic weighting of the low-level heuristics [22, 63, 72], or some
type of performance statistics [29]. Both non-adaptive and adaptive heuristic selec-
tion schemes, are generally embedded within a single-point local search high-level
heuristic.

The acceptance strategy is an important component of any local search heuris-
tic. Many acceptance strategies have been explored within hyper-heuristics. Move
acceptance strategies can be divided into two categories: deterministic and non-
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deterministic. In general, a move is accepted or rejected, based on the quality of
the move and the current solution during a single point search. At any point in
the search, deterministic move acceptance methods generate the same result for the
same candidate solution(s) used for the acceptance test. However, a different out-
come is possible if a non-deterministic approach is used. If the move acceptance test
involves other parameters, such as the current time, then these strategies are referred
to as non-deterministic strategies. Well known meta-heuristic components are used
as non-deterministic acceptance methods such and simulated annealing [33, 72].

4.2.1 Representative examples

Two hyper-heuristics based on perturbation heuristics are described here. The first
is applied to a real-world packing problem, whilst the second uses large neighbour-
hood heuristics and is applied to five variants of the well known vehicle routing
problem.

A simulated annealing hyper-heuristic for determining shipper sizes: In [33]
the tabu search hyper-heuristic, originally presented in [22], is integrated within a
simulated annealing framework. That is, a simulated annealing acceptance strategy
is combined with the previously proposed heuristic selection mechanism. Figure 3
outlines the simulated annealing-based hyper-heuristic.

The tabu search hyper-heuristic [22], selects the low-level heuristics according
to learned utilities or ranks. The framework also incorporates a dynamic tabu list
of low-level heuristics that are temporarily excluded from the selection pool. The
algorithm deterministically selects the low-level heuristic with the highest rank (not
included in the tabu list), and applies it once regardless of whether the selected move
causes an improvement or not (all moves acceptance). If there is an improvement,
the rank is increased. If the new solution is worse, the rank of the low-level heuristic
is decreased and it is made tabu. The rank update scheme is additive, and the tabu
list is emptied each time a non-improvement move is accepted. This general tabu
search approach was evaluated on various instances of two distinct timetabling and
rostering (personal scheduling) problems, and the obtained results were competitive
with those obtained using state-of-the-art problem-specific techniques. Apart from
the simulated annealing acceptance criteria, some modifications are also introduced
in [33]. In particular, a single application of a low-level heuristic h, is defined to be
k iterations of h. Therefore, the decision points are set every k iterations, and the
feedback for updating the quality of heuristic h is based on the best cost obtained
during those k iterations. Additionally, a non monotonic cooling schedule is pro-
posed to deal with the effects of having different neighbourhood sizes (given by the
pool of low-level heuristics used). The methodology was applied to a packing prob-
lem in the cosmetics industry, where the shipper sizes for storage and transportation
had to be determined. Real data was used for generating the instances, and the ap-
proach was compared with a simpler local search strategy (random descent), with
favourable results.
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Fig. 3 A simulated annealing hyper-heuristic framework.

A general heuristic for vehicle routing problems: In [72], a unified method-
ology is presented, which is able to solve five variants of the vehicle routing prob-
lem: the vehicle routing problem with time windows, the capacitated vehicle routing
problem, the multi-depot vehicle routing problem, the site-dependent vehicle rout-
ing problem and the open vehicle routing problem. All problem variants are trans-
formed into a rich pickup and delivery model and solved using an adaptive large
neighbourhood search methodology. The general framework is outlined in Fig.4,
where the repeat loop corresponds to the local search framework at the master level.
Implementing a simulated annealing algorithm is straightforward as one solution is
sampled in each iteration of the algorithm. In each iteration of the main loop, the
algorithm chooses one destroy (N−) and one repair neighbourhood (N+). An adap-
tive layer stochastically controls which neighbourhoods to choose according to their
past performance (score, Pi). The more a neighbourhood Ni has contributed to the
solution process, the larger score Pi it obtains, and hence it has a larger probability
of being chosen. The adaptive layer uses roulette wheel selection for choosing a
destroy and a repair neighbourhood.

The pickup and delivery model is concerned with serving a number of trans-
portation requests using a limited number of vehicles. Each request involves mov-
ing a number of goods from a pickup location to a delivery location. The task is
to construct routes that visit all locations such that the corresponding pickups and
deliveries are placed on the same route and such that a pickup is performed before
the corresponding delivery. Different constraints are added to model the different
problem variants. The proposed framework adaptively chooses among a number of
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insertion and removal heuristics to intensify and diversify the search. These com-
peting sub-heuristics are selected with a frequency corresponding to their historic
performance (stored as learned weights for each heuristic). The approach uses a
simulated annealing acceptance strategy with a standard exponential cooling rate. A
large number of tests were performed on standard benchmarks from the literature
on the five variants of the vehicle routing problem. The results proved to be highly
promising, as the methodology was able to improve on the best known solutions of
over one third of the tested instances.

Construct a feasible solution x; set x*:=x
Repeat

Choose a destroy and a repair neighbourhood: N- and N +
based on previously obtained scores (Pi)

Generate a new solution x’ from x using the heuristics
corresponding to the chosen destroy and repair neighbourhoods

If x’ can be accepted then set x:=x’
Update scores Pi of N- and N +
If f(x) < f(x*) set x*:=x

Until a stopping criteria is met
return x*

Fig. 4 Outline of the Adaptive Large Neighbourhood framework. N− and N+ correspond to de-
stroy and repair neighbourhoods respectively, whilst Pi stands for the score associated to the heuris-
tic i.

4.3 Recent research trends

The predominate approaches for heuristic selection have focused on a high-level
search strategy resembling an existing metaheuristic such as simulated annealing,
variable neighbourhood or genetic algorithms, which searches in a space of sim-
ple low-level heuristics. In recent years, new hyper-heuristic methodologies, such
as the use of Monte Carlo Search [21, 83] have been explored. In addition, new
domains such as software engineering [49, 99, 100], game playing [56], competi-
tive travelling salesman problem [52], and DNA sequencing [10] have been studied.
Attention has also been devoted to developing software frameworks, considering
multi-objective problems and studying the theoretical foundations of these meth-
ods, as discussed below.

4.3.1 Software frameworks

The HyFlex (Hyper-heuristic Flexible) framework [65], features a common soft-
ware interface for dealing with different combinatorial optimisation problems, and
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provides the algorithm components that are problem specific. The algorithm de-
signer does not require a detailed knowledge of the problem domains, and thus can
concentrate his/her efforts on designing adaptive general-purpose optimisation algo-
rithms. HyFlex provides six combinatorial problems implemented in Java, namely:
boolean satisfiability, one dimensional bin packing, permutation flow shop, person-
nel scheduling, travelling salesman and vehicle routing. These domains supported an
international research competition: the first Cross-Domain Heuristic Search Chal-
lenge (CHeSC) [64]. The framework has been widely used by the research com-
munity [12], and recently three new domains have been added: the 0-1 knapsack,
quadratic assignment and max-cut problem [1].

In [92] a formulation of hyper-heuristics is introduced, which unifies the object-
oriented programming type signature of hyper-heuristics. The formulation includes
perturbative and and constructive heuristics, as well as selection and generation
heuristics. The goal is to extend the software design space of hyper-heuristic al-
gorithms.

4.3.2 Multi-objective

There are emerging studies on multiobjective optimisation approaches mixing a set
of existing multiobjective metaheuristics. For example, [98] describes a multial-
gorithm, genetically adaptive multiobjective method applied to benchmark func-
tion optimisation using NSGA-II, particle swarm optimisation, adaptive metropolis
search, and differential evolution. This study demonstrates that combining standard
metaheuristic algorithms can be better than using each one is isolation, as well as
being competitive with other state-of-the-art methodologies on a set of benchmark
functions. However, it has been once again observed that the choice of low level
(meta)heuristics influences the overall performance of a hyper-heuristic in [57]. This
latter study considers a variety of selection hyper-heuristics for multi-objective opti-
misation. The results showed that combining simple random choice and great deluge
move acceptance from [59] is the best performing approach using NSGA-II, SPEA2
and IBEA as low level metaheuristics. This approach is additionally tested on a real
world wind farm layout optimisation problem.

4.3.3 Theoretical and foundational studies

The structure of heuristic search spaces has been studied using the notion of fitness
landscapes [66]. These landscapes are found to have a high level of neutrality (i.e.
the presence of plateaus). Furthermore, although rugged, they have the encouraging
feature of a globally convex or big valley structure, which indicates that there is a
gradient guiding search towards good solutions. More recently, the search space of
Boolean satisfiability (MAX-SAT) heuristics was analysed [26]. Using systematic
enumeration of millions of heuristics, they gave evidence that the heuristic land-
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scape had many clusters of good local optima, and was also amenable to other search
methods, such as, (iterated) hill-climbing.

A series of formal run-time analysis of simplified hyper-heuristic algorithms has
been conducted. In [48], the authors show the improved performance of a (1+1)
evolutionary algorithms using a strategy combining multiple operators as compared
to a strategy employing a single mutation operator with respect to a performance
metric referred to asymptotic hitting time. In [55], a rigorous run-time analysis of
hyper-heuristic mixing heuristics (operators) was performed, showing that there is
some value to mixing heuristics leading to exponentially faster search than individ-
ual heuristics on some problems. In [2], theoretical analyses showed that alterna-
tives to the additive updates in reinforcement learning, which is a commonly used
scheme for heuristic selection, should be considered, since this strategy behaves in
an asymptotically similar way to random choice based on the assumption that the
probability of improving a solution at each step is less than 0.5. Heuristic space
diversity is the focus of [45].

A fundamental open question in selection hyper-heuristics is which low-level
heuristics (and how many) to use as part of the pool. In [3] , the authors use ten-
sor analysis as an advanced machine learning approach to decide on the subset of
low level heuristics operating effectively with chosen deterministic move accep-
tance yielding improved results. A methodology for selecting a subset of effective
heuristics from a given larger set is proposed in [86]. The approach considers non-
parametric statistics and fitness landscape measurements from an available set of
heuristics and benchmark instances, and it produces a compact subset of effective
heuristics with improved performance for the underlying problem.

5 Heuristic generation methodologies

This section provides some examples of approaches that have the potential to auto-
matically generate heuristics for a given problem. Many of the approaches in the lit-
erature to generate heuristics use genetic programming [14], a branch of evolution-
ary computation concerned with the automatic generation of computer programs.
Genetic programming has been successfully applied to the automated generation
of heuristics that solve hard combinatorial optimisation problems, such as boolean
satisfiability, [5, 39, 40, 41, 53], bin packing [16, 18, 20, 58, 85], the traveling sales-
man problem [50, 51] and production scheduling [11, 32, 43, 47, 93]. In addition
to the particular representation, using trees, graphs, grammars or linear program
encodings, genetic programming differs from other evolutionary approaches in its
application area. While most applications of evolutionary algorithms deal with op-
timisation problems, genetic programming could instead be positioned in the field
of machine learning.

Some genetic programming-based hyper-heuristics have evolved local search
heuristics [5, 17, 40, 41, 50, 51] or even evolutionary algorithms [67]. An alterna-
tive idea is to use genetic programming to evolve a program representing a function,
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which is part of the processing of a given problem specific construction heuris-
tic [16, 18, 32, 43, 93]. Most examples of using genetic programming as a hyper-
heuristic are offline in that a training set is used for generating a program that acts
as a heuristic, which is thereafter used on unseen instances of the same problem.
That is, the idea is to generate reusable heuristics. However, research on disposable
heuristics has also been conducted [5, 50, 51]. In other words, heuristics are evolved
for solving a single instance of a problem. This approach is analogous to the online
heuristic selection methodologies discussed in section 4, except that a new heuristic
is generated for each instance, instead of choosing a sequence of heuristics from a
predefined set.

The adaptation of heuristic orderings can also be considered as a methodology
for heuristic generation. The adaptive approach proposed in [24], starts with one
heuristic and adapts it to suit a particular problem instance ‘on the fly’. This method
provides an alternative to existing forms of ‘backtracking’, which are often required
to cope with the possible unsuitability of a heuristic. The adaptive method is more
general, significantly easier to implement, and produces results that are at least com-
parable (if not better) than the current state-of-the-art examination timetabling algo-
rithms.

5.1 Representative examples

Two representative examples of heuristic generation using genetic programming are
discussed below. The first evolves packing heuristics that operate on a constructive
framework. The second evolves complete local search algorithms, using compo-
nents of successful, existing local search heuristics for boolean satisfiability.

Generation of construction heuristics for bin packing: As mentioned earlier,
the one-dimensional bin packing problem involves a set of integer pieces L, which
must be packed into bins of a certain capacity C, using the minimum number of
bins possible. In the online version of the problem, the number of pieces and their
sizes are not known in advance. This is in contrast to the offline version of the
problem where the set of items to be packed is available at the start. An example
of a construction heuristic used in online bin packing is first-fit, which packs a set
of pieces one at a time, in the order that they are presented. The heuristic iterates
through the open bins, and the current piece is placed in the first bin into which it
fits.

In [16, 18], construction heuristics are evolved for the online bin packing prob-
lem. The evolved heuristics, represented as trees (see Fig. 5 for an example), operate
within a fixed framework that resembles the operation of the first-fit heuristic dis-
cussed above. The key idea is to use the attributes of the pieces and bin capacities,
that represent the state of the problem, in order to evolve functions (expressions)
that would direct the process of packing. Each evolved function (GP tree) is applied
in turn to the available bins, returning a value. If the value is zero or less then the
system moves on to the next bin, but if the value is positive the piece is packed into
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the bin. In this way, it is the expression which decides when to stop the search for a
suitable bin and place the piece. The algorithm (depicted in Fig. 6) then repeats the
process for each of the other pieces until all the pieces have been packed.
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Fig. 5 Evolving one-dimensional packing heuristics with genetic programming.

In a genetic programming framework, the set of terminals and functions need
to be specified. The hyper-heuristic framework for online bin packing uses some
attributes that describe the state of the problem to define the terminals. In [16], the
authors use the following terminals:

• S, the size of the current piece,
• C, the capacity of a bin (this is a constant for the problem) and,
• F , the fullness of a bin (i.e. the total size of all of the items occupying that bin).

Later [19], these three attributes were replaced by two: S,the size of the current
item and, E (= C−F), the emptiness of a bin (i.e. how much space is remaining in
the bin, or how much more space can be allocated to it before it exceeds its capac-
ity). The function set used in [16, 18] consisted of ≤,+,−,×,%, where % is the
‘protected divide function’. The results in [16] show that a simple genetic program-
ming system can discover human designed heuristics such as first-fit, whilst in [19],
heuristics that outperformed first-fit were evolved. In [18], it was also shown em-
pirically that the choice of the training instances (categorised according to the piece
size distribution), impacts on the trade-off between the performance and generality
of the heuristics generated and their applicability to new problems.

Generation of local search heuristics for satisfiability testing: The boolean
satisfiability problem consists of finding the true/false assignments of a set of
boolean variables, to decide if a given propositional formula or expression (in con-
junctive normal form) can be satisfied. The problem, denoted as SAT, is a classic
NP-complete problem.

In [39, 40, 41] a genetic programming system, named CLASS (Composite
Learned Algorithms for SAT Search), is proposed which automatically discovers
new SAT local search heuristics. Figure 7 illustrates a generic SAT local search
algorithm, where the ‘key detail’ is the choice of a variable selection heuristic in
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For each piece p
For each bin b

output := evaluate Heuristic
If (output > 0)

place piece p in bin b
break

End If
End For

End For

Fig. 6 Pseudo code showing the overall program structure within which an evolved packing heuris-
tic operates.

the inner loop. Much research in the past decade has focused on designing a better
variable selection heuristic, and as a result, local search heuristics have improved
dramatically since the original method. The CLASS system was developed in order
to automatically discover variable selection heuristics for SAT local search. It was
noted in [39] that many of the best-known SAT heuristics (such as GSAT, HSAT,
Walksat, and Novelty [41]) could be expressed as decision tree-like combinations
of a set of primitives. Thus, it should be possible for a machine learning system to
automatically discover new, efficient variable selection heuristics by exploring the
space of combinations of these primitives. Examples of the primitives used in hu-
man designed SAT heuristics are the gain obtained by flipping a variable (i.e. the
increase in the number of satisfied clauses in the formula) or the age of a variable
(i.e. how long since it was last flipped).

The results using CLASS [41], show that a simple genetic programming system
is able to generate local search heuristics that are competitive with efficient imple-
mentations of state-of-the-art heuristics (e.g. Walksat and Novelty variants), as well
as previous evolutionary approaches. The evolved heuristics scale and generalise
fairly well on random instances as well as more structured problem classes.

A:= randomly generated truth assignment
For j:= 1 to termination condition
If A satisfies formula then return A

v:= Choose variable using
"variable selection heuristic"

A:= A with value of v inverted
End If

End For
return FAILURE (no assignment found)

Fig. 7 A generic SAT local search algorithm. The “variable selection heuristic” is replaced by the
evolved function.
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5.2 Some recent examples

The most common approach so-far for generating heuristics has been tree-based
genetic programming. Recently other genetic programming approaches have been
used such as grammar-based [89], gene expression programming [80, 81], and
grammatical evolution [17, 79].

Other machine learning techniques and representations have also been employed.
In [4, 70], the authors applied a generic genetic algorithm which creates and
searches heuristics in the form of policy matrices, communicating with an online
bin packing simulator for evaluation. The empirical results show that the generated
heuristics are specialised to the distributions and outperform the existing human
designed ones.

A lifelong learning approach is proposed in [85], where an artificial immune sys-
tem is combined with genetic programming in a system that continuously generates
new heuristics and samples problems from its environment. The system is success-
fully tested on a large set of dynamically changing 1D bin-packing instances. A
system that evolves an ensemble of heuristics for the job-shop scheduling problem
is presented in [47]. The ensemble adopts a divide-and-conquer approach in which
each heuristic solves a unique subset of the instance set considered. The system in-
corporates a heuristic generator that evolves heuristics composed of linear sequences
of dispatching rules. Following a training period, the ensemble is shown to outper-
form both existing dispatching rules and a standard genetic programming algorithm
on a large set of new test instances.

A new application domain includes generating strategies for games, such as the
work in [34] where heuristics are evolved to guide staged deepening search for the
hard game of FreeCell, obtaining solvers that outperform human players in this
challenging puzzle.

6 Conclusions

The defining feature of hyper-heuristic research is that it investigates methodologies
that operate on a search space of heuristics rather than directly on a search space
of problem solutions. This feature provides the potential for increasing the level of
generality of search methodologies. Several hyper-heuristic approaches have been
proposed that incorporate different search and machine learning paradigms. We have
suggested an updated definition of the term ‘hyper-heuristic’ to reflect recent work
in the area.

With the incorporation of genetic programming and other machine learning
methods methods, a new class of approaches can be identified; that is, heuristic
generation methodologies. These approaches provide richer heuristic search spaces,
and thus the freedom to create new methodologies for solving the underlying com-
binatorial problems. However, they are more difficult to implement than their coun-
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terpart, heuristic selection methodologies, since they require the decomposition of
existing heuristics, and the design of an appropriate framework.

We have further categorised the two main classes of hyper-heuristics (heuristic
selection and heuristic generation), according to whether they use construction or
perturbation low-level heuristics. These categories describe current research trends.
However, the possibilities are open for the exploration of hybrid approaches. We
also considered an additional orthogonal criterion for classifying hyper-heuristics
with respect to the source of the feedback during the learning process, which can be
either one instance (online approaches) or many instances of the underlying problem
(offline approaches). Both online and offline approaches are potentially useful and
therefore worth investigating. Although having a reusable method will increase the
speed of solving new instances of problems, using online (or disposable) methods
can have other advantages. In particular, searching over a space of heuristics may be
more effective than directly searching the underlying problem space, as heuristics
may provide an advantageous search space structure. Moreover, in newly encoun-
tered problems there may not be a set of related instances on which to train off-line
hyper-heuristic methods.

Hyper-heuristic research lies at the the interface between search methodologies
and machine learning methods. Machine learning is a well established artificial in-
telligence sub-field with a wealth of proven tools. The exploration of these tech-
niques for automating the design of heuristics is only in its infancy. We foresee
increasing interest in these methodologies in the coming years.
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