Skip to main content

Research Repository

Advanced Search

An Adaptive, Repeatable and Rapid Auto-Reconfiguration Process in a Smart Manufacturing System for Small Box Assembly

Wang, Zi; Kendall, Peter; Gumma, Kevin; Turner, Alison; Ratchev, Svetan

An Adaptive, Repeatable and Rapid Auto-Reconfiguration Process in a Smart Manufacturing System for Small Box Assembly Thumbnail


Authors

SARA WANG SARA.WANG@NOTTINGHAM.AC.UK
Research Fellow in Aerospace

Peter Kendall

Kevin Gumma

Alison Turner

Professor SVETAN RATCHEV svetan.ratchev@nottingham.ac.uk
Cripps Professor of Production Engineering & Head of Research Division



Abstract

With increasing demand for productivity, flexibility , and sustainability, there is the need for a flexible manufacturing system that is auto-reconfigurable for variations in product types and assembly processes. However, the repeata-bility of reconfigurable components needs to be controlled and quantified in order to achieve the critical product tolerances required. High levels of repeatability for reconfigurable components are often achieved by a lengthy calibration. Besides, automated processes would rely on the precise tool and part positioning or an adaptive process approach. In this paper, an adaptive, highly repeatable and rapid auto-reconfiguration process in a smart manufacturing environment is proposed for small box product assembly, such as rudders, elevators and winglets. The process involves a reconfigurable tooling system for physically supporting different products, robots and end effectors to perform automated processes, programmable logic controllers to orchestrate cell safety and robotic tasks, an autonomous guided vehicle (AGV) to provide jig mobility, and a metrology system to realise cell-level positional layout. The rapid reconfigurable tooling system was tested and quantified for repeatability and configuration time, and the adaptive auto-reconfiguration process was validated by moving the jig frame in a lab environment simulating inaccurate AGV parking. The repeatability of profile board positioning can achieve a value smaller than +/-0.04mm, with an estimated between-product changeover time less than 10 minutes. With an external metrology system, the positional layout of the cell was captured and used to adapt robot programs. Successful engagement was observed, proving the feasibility of the adaptive process.

Citation

Wang, Z., Kendall, P., Gumma, K., Turner, A., & Ratchev, S. (2022, August). An Adaptive, Repeatable and Rapid Auto-Reconfiguration Process in a Smart Manufacturing System for Small Box Assembly. Paper presented at 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE), Mexico City, Mexico and Chengdu, China

Presentation Conference Type Conference Paper (unpublished)
Conference Name 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)
Conference Location Mexico City, Mexico and Chengdu, China
Start Date Aug 20, 2022
End Date Aug 24, 2022
Deposit Date Aug 30, 2022
Publicly Available Date Sep 5, 2022
Public URL https://nottingham-repository.worktribe.com/output/10630711
Related Public URLs https://ras.papercept.net/conferences/conferences/CASE22/program/CASE22_ContentListWeb_3.html

Files




You might also like



Downloadable Citations