Skip to main content

Research Repository

Advanced Search

Design of power, propulsion, and thermal sub-systems for a 3U CubeSat measuring Earth’s radiation imbalance

Claricoats, Jack; Dakka, Sam M.

Design of power, propulsion, and thermal sub-systems for a 3U CubeSat measuring Earth’s radiation imbalance Thumbnail


Authors

Jack Claricoats

SAM DAKKA Sam.Dakka@nottingham.ac.uk
Assistant Professor



Abstract

The paper presents the development of the power, propulsion, and thermal systems for a 3U CubeSat orbiting Earth at a radius of 600 km measuring the radiation imbalance using the RAVAN (Radiometer Assessment using Vertically Aligned NanoTubes) payload developed by NASA (National Aeronautics and Space Administration). The propulsion system was selected as a Mars-Space PPTCUP -Pulsed Plasma Thruster for CubeSat Propulsion, micro-pulsed plasma thruster with satisfactory capability to provide enough impulse to overcome the generated force due to drag to maintain an altitude of 600 km and bring the CubeSat down to a graveyard orbit of 513 km. Thermal analysis for hot case found that the integration of a black high-emissivity paint and MLI was required to prevent excessive heating within the structure. Furthermore, the power system analysis successfully defined electrical consumption scenarios for the CubeSat’s 600 km orbit. The analysis concluded that a singular 7W solar panel mounted on a sun-facing side of the CubeSat using a sun sensor could satisfactorily power the electrical system throughout the hot phase and charge the craft’s battery enough to ensure constant electrical operation during the cold phase, even with the additional integration of an active thermal heater. However, when the inevitable end-of-life degradation of the solar cell was factored into the analysis, an approximate power deficit of 2 kJ was found. This was supplemented by additional solar cell integrated into the antenna housing face.

Citation

Claricoats, J., & Dakka, S. M. (2018). Design of power, propulsion, and thermal sub-systems for a 3U CubeSat measuring Earth’s radiation imbalance. Aerospace, 5(2), Article 63. https://doi.org/10.3390/aerospace5020063

Journal Article Type Article
Acceptance Date Jun 6, 2018
Online Publication Date Jun 11, 2018
Publication Date Jun 11, 2018
Deposit Date Sep 5, 2018
Publicly Available Date Sep 5, 2018
Journal Aerospace
Electronic ISSN 2226-4310
Publisher MDPI
Peer Reviewed Peer Reviewed
Volume 5
Issue 2
Article Number 63
DOI https://doi.org/10.3390/aerospace5020063
Keywords CubeSats; thermal design; PMAD; power system design; propulsion system design; albedo
Public URL https://nottingham-repository.worktribe.com/output/1059980
Publisher URL http://www.mdpi.com/2226-4310/5/2/63

Files




You might also like



Downloadable Citations