Eugene Maltsev
DNA charge neutralisation by linear polymers I: irreversible binding
Maltsev, Eugene; Wattis, Jonathan A.D.; Byrne, Helen M.
Authors
Abstract
We develop a deterministic mathematical model to describe the way
in which polymers bind to DNA by considering the dynamics of the
gap distribution that forms when polymers bind to a DNA plasmid.
In so doing, we generalise existing theory to account for overlaps
and binding cooperativity whereby the polymer binding rate depends
on the size of the overlap The proposed mean-field models are then
solved using a combination of numerical and asymptotic methods. We
find that overlaps lead to higher coverage and hence higher charge
neutralisations, results which are more in line with recent
experimental observations. Our work has applications to gene
therapy where polymers are used to neutralise the negative charges
of the DNA phosphate backbone, allowing condensation prior to
delivery into the nucleus of an abnormal cell.
Citation
Maltsev, E., Wattis, J. A., & Byrne, H. M. DNA charge neutralisation by linear polymers I: irreversible binding. Physical Review E, 74,
Journal Article Type | Article |
---|---|
Deposit Date | Aug 15, 2008 |
Journal | Physical Review E |
Print ISSN | 2470-0045 |
Electronic ISSN | 2470-0053 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 74 |
Public URL | https://nottingham-repository.worktribe.com/output/1019290 |
Publisher URL | http://pre.aps.org/browse |
Files
pap15.pdf
(316 Kb)
PDF
You might also like
Investigative power of Genomic Informational Field Theory (GIFT) relative to GWAS for genotype-phenotype mapping
(2024)
Preprint / Working Paper
On the Meaning of Averages in Genome-wide Association Studies: What Should Come Next?
(2023)
Journal Article
GIFT: New method for the genetic analysis of small gene effects involving small sample sizes
(2022)
Journal Article
Analysis of phenotype-genotype associations using genomic informational field theory (GIFT)
(2022)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search