Qi Chen
Dempster-Shafer for Anomaly Detection
Chen, Qi; Aickelin, Uwe
Authors
Uwe Aickelin
Abstract
In this paper, we implement an anomaly detection system using the Dempster-Shafer method. Using two standard benchmark problems we show that by combining multiple signals it is possible to achieve better results than by using a single signal. We further show that by applying this approach to a real-world email dataset the algorithm works for email worm detection. Dempster-Shafer can be a promising method for anomaly detection problems with multiple features (data sources), and two or more classes.
Citation
Chen, Q., & Aickelin, U. Dempster-Shafer for Anomaly Detection.
Conference Name | Proceedings of the International Conference on Data Mining (DMIN 2006) |
---|---|
Deposit Date | Oct 17, 2007 |
Peer Reviewed | Peer Reviewed |
Public URL | https://nottingham-repository.worktribe.com/output/1018736 |
Files
06dmin_qi.pdf
(<nobr>283 Kb</nobr>)
PDF
You might also like
Modelling Reactive and Proactive Behaviour in Simulation: A Case Study in a University Organisation
(2011)
Conference Proceeding
Mimicking the behaviour of idiotypic AIS robot controllers using probabilistic systems
(2009)
Presentation / Conference
Articulation and Clarification of the Dendritic Cell Algorithm
(2006)
Book Chapter
The danger theory and its application to Artificial Immune Systems
(2002)
Conference Proceeding
Genetic algorithms for multiple-choice problems
(1999)
Thesis