William Wilson
Detecting Motifs in System Call Sequences
Wilson, William; Feyereisl, J; Aickelin, Uwe
Authors
J Feyereisl
Uwe Aickelin
Abstract
The search for patterns or motifs in data represents an area of key interest to many researchers. In this paper we present the Motif Tracking Algorithm, a novel immune inspired pattern identification tool that is able to identify unknown motifs which repeat within time series data. The power of the algorithm is derived from its use of a small number of parameters with minimal assumptions. The algorithm searches from a completely neutral perspective that is independent of the data being analysed and the underlying motifs. In this paper the motif tracking algorithm is applied to the search for patterns within sequences of low level system calls between the Linux kernel and the operating system’s user space. The MTA is able to compress data found in large system call data sets to a limited number of motifs which summarise that data. The motifs provide a resource from which a profile of executed processes can be built. The potential for these profiles and new implications for security research are highlighted. A higher level system call language for measuring similarity between patterns of such calls is also suggested.
Citation
Wilson, W., Feyereisl, J., & Aickelin, U. Detecting Motifs in System Call Sequences.
Conference Name | Proceedings of the 8th International Workshop on Information Security Applications (WISA 2007) |
---|---|
Deposit Date | Oct 12, 2007 |
Peer Reviewed | Peer Reviewed |
Public URL | https://nottingham-repository.worktribe.com/output/1018092 |
Files
07wisa_motifs.pdf
(167 Kb)
PDF
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search