REUBEN O'DEA REUBEN.ODEA@NOTTINGHAM.AC.UK
Associate Professor
A two-fluid model for tissue growth within a dynamic flow environment
O'Dea, Reuben D.; Waters, Sarah L.; Byrne, Helen M.
Authors
Sarah L. Waters
Helen M. Byrne
Abstract
We study the growth of a tissue construct in a perfusion bioreactor, focussing on its response to the mechanical environment. The bioreactor system is modelled as a two-dimensional channel containing a tissue construct through which a flow of culture medium is driven. We employ a multiphase formulation of the type presented by G. Lemon, J. King, H. Byrne, O. Jensen and K. Shakesheff in their study (Multiphase modelling of tissue growth using
the theory of mixtures. J. Math. Biol. 52(2), 2006, 571–594) restricted to two interacting fluid phases, representing a cell population (and attendant extracellular matrix) and a culture medium, and employ the simplifying limit of large interphase viscous drag after S. Franks in
her study (Mathematical Modelling of Tumour Growth and Stability. Ph.D. Thesis, University of Nottingham, UK, 2002) and S. Franks and J. King in their study Interactions between a uniformly proliferating tumour and its surrounding: Uniform material properties. Math. Med. Biol. 20, 2003, 47–89).
The novel aspects of this study are: (i) the investigation of the effect of an imposed flow on the growth of the tissue construct, and (ii) the inclusion of a chanotransduction mechanism regulating the response of the cells to the local mechanical environment. Specifically, we
consider the response of the cells to their local density and the culture medium pressure. As such, this study forms the first step towards a general multiphase formulation that incorporates the effect of mechanotransduction on the growth and morphology of a tissue construct.
The model is analysed using analytic and numerical techniques, the results of which illustrate the potential use of the model to predict the dominant regulatory stimuli in a cell population.
Citation
O'Dea, R. D., Waters, S. L., & Byrne, H. M. (2008). A two-fluid model for tissue growth within a dynamic flow environment. European Journal of Applied Mathematics, 19, https://doi.org/10.1017/S0956792508007687
Journal Article Type | Article |
---|---|
Publication Date | Aug 1, 2008 |
Deposit Date | Nov 26, 2008 |
Publicly Available Date | Nov 26, 2008 |
Journal | European Journal of Applied Mathematics |
Print ISSN | 0956-7925 |
Electronic ISSN | 1469-4425 |
Publisher | Cambridge University Press |
Peer Reviewed | Peer Reviewed |
Volume | 19 |
DOI | https://doi.org/10.1017/S0956792508007687 |
Public URL | https://nottingham-repository.worktribe.com/output/1015163 |
Publisher URL | http://journals.cambridge.org/action/displayJournal?jid=EJM |
Files
EJAM.pdf
(760 Kb)
PDF
You might also like
Spreading dynamics on spatially constrained complex brain networks
(2013)
Journal Article
A multiscale analysis of nutrient transport and biological tissue growth in vitro
(2014)
Journal Article
A geometric network model of intrinsic grey-matter connectivity of the human brain
(2015)
Journal Article
Pushed and pulled fronts in a discrete reaction-diffusion equation
(2015)
Journal Article
Price of anarchy on heterogeneous traffic-flow networks
(2016)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search