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We study the growth of a tissue construct in a perfusion bioreactor, focussing on its

response to the mechanical environment. The bioreactor system is modelled as a two-

dimensional channel containing a tissue construct through which a flow of culture medium

is driven. We employ a multiphase formulation of the type presented by Lemon et al. [37],

restricted to two interacting fluid phases, representing a cell population (and attendant

extracellular matrix) and culture medium, and employ the simplifying limit of large in-

terphase viscous drag after Franks, Franks & King [21, 23].

The novel aspects of this study are: (i) the investigation of the effect of an imposed

flow on the growth of the tissue construct, and (ii) the inclusion of a mechanotransduction

mechanism regulating the response of the cells to the local mechanical environment. Specif-

ically, we consider the response of the cells to their local density and the culture medium

pressure. As such, this study forms the first step towards a general multiphase formulation

that incorporates the effect of mechanotransduction on the growth and morphology of a

tissue construct.

The model is analysed using analytic and numerical techniques, the results of which

illustrate the potential use of the model to predict the dominant regulatory stimuli in a

cell population.

1 Introduction

In vitro tissue engineering is the logical extension of transplant surgery and involves the

growth of replacement tissue outside the body to alleviate the chronic shortage of tissue

available from donors [15]. Significant research has been dedicated to the study of tissue

engineering processes relevant to liver, skin, collagen (for cartilage/tendon replacement)

and bone (see [15, 60] for interesting reviews) and progress has been made in a num-

ber of areas. These include: maintenance of tissue-specific functions via mimicry of in

vivo conditions through appropriate cell co-culture and/or three-dimensional spheroidal

culture [3, 26, 28, 41, 55]; and understanding the influence of artificial scaffolds which

provide mechanical support for construct growth and whose surface chemistry and pore

size may be altered to encourage cell anchorage or increased population of the scaffold

[30, 58, 65].

Three-dimensional tissue culture is desirable to maintain cell-specific function; how-

ever, limitations in the diffusion of nutrients and waste products often result in the
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formation of a construct with viable, proliferating cells at its periphery but a necrotic

core: early studies have shown that cellular spheroids of diameter greater than 1mm gen-

erally develop a necrotic core [61]. Depending upon the application, engineered constructs

must be relatively large to serve as grafts for tissue replacement; it is clear, therefore,

that mass-transfer limitations represent challenges for in vitro tissue engineers [45]. To

rectify this, bioreactors are widely used. A bioreactor is an advanced tissue culture appa-

ratus which enables control of the culture environment. Nutrient supply and metabolite

removal may be enhanced by using perfusion or circulation/mixing strategies; further-

more, bioreactors allow monitoring and control of factors such as pH, and the provision

of growth factors and other cell-signalling molecules.

As well as controlling the biochemical environment, many bioreactors are designed

specifically to provide mechanical stimulation to cell cultures via, for instance, fluid shear

stress or tensile or compressive forces applied either on the macroscale or via magnetic

particles embedded in the cell membrane (see [8, 45] for a review). These stimuli are

integrated into the cellular response via a process known as mechanotransduction. The

importance of mechanical stimuli to tissue function is noted by many authors including

Fung [24], who asserts that the correct function of organs is dependent on the level of

internal stress. A great many “proof of principle” studies have illustrated the beneficial

effect of mechanical conditioning on the structural and functional properties of engineered

tissues; however, little is known about either the manner in which these forces should be

applied for specific tissues or how these stimuli are interpreted by the cells [45]. It is clear,

however, that the mechanical environment required for optimum growth will be peculiar

to the tissue under consideration; bespoke bioreactors are therefore required to provide

appropriate physical (and biochemical) cues for different tissue engineering applications.

Mathematical modelling of tissue growth is a subject area which has received a great

deal of attention; the clinical applications of such models are myriad. In particular, much

work has been dedicated to modelling tumour growth [1], angiogenesis [9, 11], wound

healing [59] and, more recently, in vitro tissue engineering processes [13, 14]. Within

the context of tissue engineering, the goals of such models are to explain how observed

tissue engineering problems arise, to suggest mechanisms to resolve them and, thereby, to

predict optimal protocols for tissue growth. Furthermore, idealised tissue growth studies

can provide insights useful in the design of bespoke bioreactor systems.

A variety of approaches has been used to model tissue growth. Discrete cellular au-

tomata models are employed in, for example, [20, 49, 50], while in [31, 32] chemotaxis-

based continuum models are exploited (see [40] for a review). Numerous studies have

considered the effect of limited nutrient availability and/or the presence of inhibitors on

tissue growth (e.g. in the context of tumour growth [5, 25, 42]; for a review see [1]).

The stresses experienced by cells at the microscopic level are calculated in [29, 46, 62];

the influence of the cells’ mechanical environment on growth is considered by Roose

[57] in the context of growth-induced stresses, and scaffold adhesion-guided behaviour is

investigated by Powers et al. [52, 53].

The preceding studies analyse tissue growth processes in general terms with the results

applied to (for instance) tumour growth; studies which consider specifically tissue growth

in porous scaffolds include Malda et al. [43] in which the development of oxygen gradi-

ents in the absence of perfusion is investigated using a simple diffusion-consumption
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model. Parameter estimation is achieved via comparison with experimental evidence.

Three-dimensional fluid flow through porous scaffolds in a perfusion bioreactor is stud-

ied by Porter et al. [51] in which a detailed model of a porous scaffold is obtained via

micro-computed tomography imaging and the flow profile calculated using the Lattice-

Boltzmann method. Relating simulation results to experimental results, it is concluded

that a mean pore-surface shear stress of 5× 10−5Pa corresponds to increased cell prolif-

eration and viability. Raimondi et al. [54] demonstrate that the material properties and

cell viability of constructs resulting from perfusion shows a two-fold improvement com-

pared to surface perfusion or static culture; computational modelling is used to quantify

the fluid-dynamical environment at the microscopic level. Modelling of both cell growth

and fluid flow within a three-dimensional scaffold in a perfusion bioreactor is considered

by Colletti et al. [12]. The flow through the scaffold is governed by Brinkman’s equa-

tion and nutrient distribution is governed by a reaction-advection-diffusion equation. Cell

growth is assumed to depend upon local nutrient availability via an ordinary differential

equation.

In this paper, we present a continuum mathematical model relevant to tissue growth

processes in a perfusion bioreactor. In contrast to the above analyses of perfusion bioreac-

tors [12, 43, 51, 54], we employ a multiphase formulation after Lemon et al. [37], restricted

to two interacting viscous fluid phases, representing a cell population and attendant ex-

tracellular matrix (ECM) and a culture medium (fluid-based models for biological tissue

growth have been widely exploited, especially in modelling tumour growth; see, for exam-

ple, [6, 7, 21, 23]). We consider this model to be a first step towards a general multiphase

formulation allowing examination of the effect of mechanotransduction on the growth

and subsequent morphology of a tissue. Our continuum macroscale model allows explicit

consideration of the complex interactions involved in tissue growth without considering

the precise microscopic detail; however, the averaging process involved in deriving models

of this type ensures that the terms present in the model equations arise from appropriate

microscopic considerations. The derivation and analysis of multiphase models (for bio-

logical and other applications) has been treated in great detail in the literature; see, for

example, [2, 35, 44, 63], and for two phase flows [16–18].

The perfusion bioreactor under consideration is based upon that employed by El-

Haj et al. (see, for example, [19]) which comprises a tissue construct within a culture

medium-filled cylinder along which a flow is driven; however, the mathematical techniques

and modelling approaches employed here are readily transferrable to other tissue culture

systems. Our model accommodates mechanotransduction-affected cell proliferation, ECM

deposition and cell death. Nutrient-limited growth is not considered since we assume

that perfusion provides an abundant supply of nutrient. The investigation of the effect

of the imposed flow on the response of the cell phase and the inclusion of a simple

mechanotransduction mechanism are the novel aspects of this study.

In §2, we introduce the perfusion bioreactor system and present the equations governing

our two phase model. Guided by parameter estimation, in §2.1, we exploit the limit

of large interphase viscous drag to recover the model equations of [21, 23], which we

then employ for the remainder of this paper. In §3, we investigate the impact of an

ambient flow on the growth of a one-dimensional tissue. Analytic solutions are presented

in the limit for which the tissue is defined by two sharp interfaces, and the stability of
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these interfaces to transverse perturbations is investigated (§3.1). Numerical solutions

are obtained for a diffuse one-dimensional cell population growing at a constant rate

(§3.2) and in §4.1, corresponding two-dimensional numerical simulations are presented.

Lastly, in §4.2 we extend the model by coupling the cells’ proliferative response to the

local mechanical environment, allowing consideration of a simple mechanotransduction

mechanism. A discussion of our model and its applications within a tissue engineering

context are presented in §5, together with suggestions for future work.

2 A two phase model for tissue growth

We apply the general multiphase formulation given in [37] to develop a simple model

relevant to tissue engineering processes. For brevity, we do not recapitulate the multiphase

formulation here: the interested reader is directed to [17, 35, 37] for more details.

We consider the growth of a tissue construct within a nutrient-rich fluid culture medium

and investigate the effect of an imposed flow on the response of the cells. We neglect the

solid characteristics of the tissue construct (including, for instance, the presence of a

scaffold) and employ a two-fluid model of the type presented in [4, 6, 17, 21, 23, 33].

This system is representative of tissue culture within a dynamic flow environment, for

example, a perfusion-type bioreactor system. Our idealised perfusion bioreactor model

is based upon that employed by El-Haj et al. and we represent this system as a two-

dimensional channel containing a two phase mixture of interacting viscous fluids. A

two-dimensional Cartesian geometry is chosen for simplicity; however, generalisation to a

cylindrical geometry is straightforward. The cells and ECM are modelled as a single phase

(henceforth denoted the “cell phase”); the second phase represents the culture medium.

Perfusion is represented by an imposed flow of culture medium. In the following we will

employ the term “tissue construct” to distinguish the region occupied by the interacting

system of cell and culture medium phases from the remainder of the channel which

contains only culture medium. At certain stages in this paper, the interface between the

construct and the surrounding culture medium will be assumed to be sharp or diffuse to

allow different analyses to be undertaken.

Tissue construct Culture mediumCulture medium
w = 1w = 1 n + w = 1

x∗

y∗

h∗

L∗

Figure 1. An idealised model of a perfusion bioreactor as a two-dimensional channel of length
L∗ and width h∗ containing a tissue construct.
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Nomenclature

n, w, s, θ Volume fraction of cell, culture medium, scaffold phases; porosity
p∗

w, p∗

n, Σ∗

n Culture medium and cell phase pressure; intraphase pressure (Nm−2)
S∗

n, S∗

w Net material transfer rate into cell and culture medium phases (s−1)
σ

∗

n, σ
∗

w Stress tensor for the cell and culture medium phases (Nm−2)
u

∗

n, u
∗

w Velocity of cell and culture medium phases (ms−1)
F

∗

wn, F
∗

nw Forces (per unit volume) between cell and culture medium phases (Nm−3)
x

∗ = (x∗, y∗) Spatial coordinate in horizontal and vertical directions (m)
t∗ Time (s)

Table 1. Nomenclature and units

A Cartesian coordinate system x
∗ = (x∗, y∗) is chosen with corresponding coordinate

directions (x̂, ŷ) and the channel occupies 0 6 x∗ 6 L∗, 0 6 y∗ 6 h∗ (see figure 1). In this

paper, asterisks distinguish dimensional quantities from their dimensionless equivalents.

We associate with each of the cell and culture medium phases a volume fraction, denoted

n and w, respectively, and a volume-averaged velocity, u
∗

i = (u∗

i , v
∗

i ), pressure, p∗i , stress

tensor, σ
∗

i and density, ρi (where i = n, w denotes variables associated with the cell

and culture medium phases, respectively) and assume that these are functions of x
∗ and

t∗, where t∗ represents time. Table 1 summarises the variables employed in the model,

together with their units (where appropriate).

Assuming that each phase is incompressible with the same density, and neglecting

inertial effects, we obtain the following governing equations (see [37]):

conservation of mass:
∂n

∂t∗
+ ∇∗ · (nu

∗

n) = S∗

n + D∗∇∗2n, (2.1)

∇∗ · (nu
∗

n + wu
∗

w) = S∗

n + S∗

w; (2.2)

conservation of momentum: ∇∗ · (wσ
∗

w) + F∗

wn = 0, (2.3)

∇∗ · (nσ
∗

n + wσ
∗

w) = 0; (2.4)

no-voids: n + w = 1. (2.5)

In equations (2.1) and (2.2), S∗

n, S∗

w are the net rates of material production for each

phase and D∗ is the diffusion coefficient for the cell phase. In (2.3), F∗

wn represents

the force exerted by the cell phase on the culture medium at the interface between these

phases, and we assume F∗

wn = −F∗

nw as implied by (2.4). As in Drew [17], the influence of

these interfaces, especially with respect to thermodynamic properties, is not considered;

see Kolev [35] for a thorough discussion of these terms.

We remark that a diffusive term has been added to the mass conservation equation

(2.1); whilst cells do exhibit random motion, the tissue growth and perfusion-induced

flow fields are the dominant mechanisms leading to cell movement, with diffusive effects

assumed to be negligible [22, 33]. However, we retain diffusive terms for numerical con-

venience since they eliminate the moving boundaries between the tissue construct and

culture medium, ensuring that we need not track explicitly the sharp interface which is

evident when D∗ = 0.

To close the model equations (2.1)–(2.5), we now specify constitutive laws for the
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interphase forces (F∗

ij), stress tensors (σ∗

i ) and material production rates (S∗

i ) which

describe the behaviour of our system.

Following [4, 6, 37], we represent the interphase force as follows:

F∗

wn = p∗w∇∗w + k∗(u∗

n − u
∗

w), (2.6)

wherein the pressure in the culture medium phase is denoted p∗w, and k∗ is the coefficient

of interphase viscous drag, which we assume is constant. The pressure in the cell phase

is related to that in the culture medium by the following relation:

p∗n = p∗w + Σ∗

n, (2.7)

where Σ∗

n is a prescribed intraphase pressure resulting from interactions within the cell

phase such as osmotic stresses or surface tension within cell membranes. Equation (2.7)

will be employed to eliminate the cell phase pressure, p∗n, from the governing equations

and carries the tacit assumption that the interphase tractions are negligible. We do not

specify a functional form for the intraphase pressure function, Σ∗

n, since in the analy-

sis presented in this paper, we employ a lumped pressure field which encapsulates this

function. Appropriate functional forms for intraphase pressures and interphase tractions

are given in [6, 37]. Each of the phases are modelled as viscous fluids and the associated

volume-averaged stress tensors are therefore

σ
∗

i = −p∗i I + µ∗

i (∇∗
u
∗

i + ∇∗
u
∗T
i ) + λ∗

i (∇∗ · u∗

i )I; i = n, w, (2.8)

where µ∗

i and λ∗

i are the dynamic shear and bulk viscosity coefficients of the ith phase

and I is the identity matrix. Functional forms for the material production terms S∗

i will

be chosen to reflect different physical processes at various points in this paper and we

delay specification of appropriate boundary conditions until the derivation of a model in

the limit of large interphase viscous drag.

We non-dimensionalise as follows:

x
∗ = L∗

x, t∗ =
L∗

U∗

w

t, u
∗

i = U∗

wui, (p∗w, Σ∗

n) =
U∗

wµ∗

w

L∗
(pw, Σn), S∗

i =
U∗

w

L∗
Si, (2.9)

wherein U∗

w is a velocity scale which will be determined by the choice of pressure drop

or upstream flux. A viscous scaling is employed for the culture medium and intraphase

pressures (pw, Σn) since we assume that viscous effects dominate inertia in the momentum

equations. In view of the non-dimensionalisation t∗ = L∗t/U∗

w, the timescale of interest

is the time taken for a fluid particle to travel along the length of the bioreactor. The

flow rate for the bioreactor system of El-Haj et al. is 0.1ml/min and the construct has

a diameter of 9mm and length 4mm; assuming that this is of the same order as the

bioreactor length, L∗, this gives a timescale of approximately 2.5 minutes. We note that

this is very short in comparison to the timescale over which tissue growth occurs; however,

in this paper, we consider the case for which the ratio of the growth and flow timescales is

O(1) (which corresponds to employing fast growth rates) to minimise computation time

and to illustrate features of the system.
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The dimensionless form of equations (2.1)–(2.4) is as follows:

∂n

∂t
+ ∇ · (nun) = Sn + D∇2n, (2.10)

∇ · (nun + wuw) = Sn + Sw, (2.11)

w∇pw + k(uw − un) −∇ ·
[
w(∇uw + ∇u

T
w) + γww(∇ · uw)I

]
= 0, (2.12)

∇ ·
[
−(pw + nΣn)I + µnn(∇un + ∇u

T
n ) + γnn(∇ · un)I

+ w(∇uw + ∇u
T
w) + γww(∇ · uw)I

]
= 0, (2.13)

and equation (2.5) is used to eliminate w.

In equations (2.10)–(2.13), the dimensionless parameters D, µn, k, γw and γn are

defined as follows:

D =
D∗

U∗

wL∗
, µn =

µ∗

n

µ∗

w

, k =
k∗L∗2

µ∗

w

, γw =
λ∗

w

µ∗

w

, γn =
λ∗

n

µ∗

w

, (2.14)

and the channel now occupies 0 6 x 6 1, 0 6 y 6 h = h∗/L∗. The physical interpretation

of the dimensionless diffusion coefficient (or inverse Peclet number) D, relative viscosity

µn, and drag coefficient k is obvious. The parameter γi describes the relative importance

of the viscosity associated with the rate of change of volume of the ith phase compared

to that associated with fluid shear. It is usual to take λ∗

i = −2µ∗

i /3 (so that in equation

(2.8), we have pi = −σi,kk/3; i = n, w) implying γw = −2/3 and γn = −2µ∗

n/3µ∗

w

[21, 23, 33, 37]. We expect µ∗

n > µ∗

w and therefore assume γn 6 −2/3.

2.1 Large drag limit

By considering the Stokes drag due to water flowing past a spherical cell, Lubkin & Jack-

son [39] estimated the drag coefficient as: k∗ = 4.5×107N·m−4 ·s. An appropriate length-

scale for the system is the bioreactor length, and assuming that this is of the same order

as the scaffold length, we choose L∗ = 4 × 10−3m. Assuming that the culture medium

viscosity is equal to that of water, µ∗

w = 1 × 10−3N · m−2 · s [36], the dimensionless drag

coefficient may then be calculated from equation (2.14) to give:

k =
k∗L∗2

µ∗

w

= 7.2 × 105. (2.15)

Motivated by this, we now consider the limit in which the interphase viscous drag is

large (k ≫ 1) and derive appropriate simplified versions of the governing equations and

boundary conditions.

We consider a power series expansion of the dependent variables as follows:

n(x, t) = n0(x, t) +
1√
k

n1(x, t) +
1

k
n2(x, t) + · · · , (2.16)

with similar expansions for un, uw, pw and Σn; at leading order, equation (2.12) gives

un0 = uw0 = u0 so that we may associate with each phase a common velocity. Following

[21, 23], we assume that each phase has the same material properties (γi = −2/3, µn = 1)

and that at leading order the mass production terms Sn0, Sw0 are given by

Sn0 = (km − kd)n0, Sw0 = kdn0, (2.17)
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in which km = (k∗

mL∗)/U∗

w represents the dimensionless rate of cell mitosis and ECM

deposition (in the interests of brevity we henceforth refer to this as the “growth rate”),

kd = (k∗

dL∗)/U∗

w represents the dimensionless rate of cell death and ECM degradation

(which we will refer to as the “death rate”) and k∗

m and k∗

d are the corresponding dimen-

sional rates. In general, these will depend upon the cells’ mechanochemical environment

(e.g. nutrient availability, growth factors, local cell density or stress) and in the following

derivation we therefore allow spatio-temporal variation: km(x, t), kd(x, t).

Dropping the subscript notation for brevity, from (2.11)–(2.13), we obtain the following

equations at leading order:

∇ · u = kmn, (2.18)

∇p = ∇2
u +

1

3
∇ (∇ · u) , (2.19)

where the lumped pressure field, p, is related to pw0 via p = pw0 + n0Σn0. Taking the

divergence of equation (2.19) gives an expression for ∇2(∇ · u), which, on substitution

into the Laplacian of (2.18), yields an equation for the pressure in terms of the cell

volume fraction only. We may then restate our governing equations in the more natural

form given in [21, 23]:

∂n

∂t
+ ∇ · (nu) = (km − kd)n + D∇2n, (2.20)

∇2p =
4

3
∇2 (kmn) , (2.21)

∇2
u = ∇p − 1

3
∇ (kmn) . (2.22)

This model breaks down in a boundary layer of thickness O(1/
√

k) near the channel

walls when intraphase viscous effects become important (see equation (2.12)); appropriate

boundary conditions on the outer problem are given in Franks [21] as follows:

∂u

∂x
= kmn − ∂v

∂y
, v = 0,

∂n

∂y
= 0,

∂p

∂y
= 0, at y = 0, h, (2.23)

which imply slip along, but no-penetration of cells or culture medium through y = 0, h.

Axial boundary conditions which ensure that the tissue construct does not extend along

the channel’s length and, additionally, set an axial pressure drop which drives a flow are

as follows:

n = 0, pw = Pu, on x = 0, (2.24)

n = 0, pw = Pd, on x = 1, (2.25)

wherein Pu and Pd are the dimensionless up- and downstream pressures, related to the

corresponding dimensional pressures via (Pu, Pd) = (P ∗

u , P ∗

d )L∗/(U∗

wµ∗

w). In the following

sections, we present solutions to the model equations (2.20)–(2.25) in various limits.

In an extension to [21, 23], in §3 and §4.1 we investigate the effect of an ambient

flow on a uniformly proliferating tissue construct, for which km and kd are constant.

In §3, solutions are obtained in the one-dimensional limit: in §3.1 analytic solutions are

presented in the regime for which the tissue construct is delineated by two sharp interfaces

(D = 0) and its stability to transverse perturbations is determined; in §3.2, numerical
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Parameter Value Section Parameter Value Section

(µn, γi) (1, -2/3) §§2.1–4 U 1 §3
(L0(0), R0(0)) (4, 6) §3.1 km 0.5-1.5; 10; 4 §§3.1–4.1
kd 0.1 §§3.1–4 h 1 §§3.1.1–4
l1(0), r1(0) 0.2 §3.1.1 D 5×10−4; 1×10−3 §§3.2, 4
q 2 §3.1.1 n(0) 0.2 §3.1.1
X 7.25–8 §3.1.1 (Pu, Pd) (1, 0) §4
g 60; 15 §4.2 (k1n, k2n) (4, 5) §4.2
(k1p, k2p) (5, 7) §4.2 (n′

1, n′

2) (0.5, 0.7) §4.2
(p′

1, p′

2) (0.5, 0.8) §4.2

Table 2. The (dimensionless) model parameters and values used in the numerical

solutions together with the section(s) in which they are employed.

solutions for a diffuse cell population (D 6= 0) are presented and compared with the

analytic solutions from §3.1. In §4.1, corresponding two-dimensional numerical solutions

are presented. In §4.2, we further extend the model by postulating functional forms for

the growth rate, km(x, t), which allow the influence of a range of mechanical stimuli

on the growth response of the cells to be accommodated. We remark here that in all

of the subsequent numerical simulations, the parameter values are selected to illustrate

the behaviour of the model under a particular growth regime. The parameter values

employed in each of the following sections are summarised in table 2.

3 One-dimensional growth

We now assume that the tissue undergoes one-dimensional growth parallel to the x-axis

and that the associated pressure and velocity fields are functions of x and t only. For

mathematical convenience, we initially consider growth within a channel of semi-infinite

length. In this case, equations (2.20)–(2.22) reduce to give

∂n

∂t
+

∂

∂x
(nu) = (km − kd)n + D

∂2n

∂x2
, (3.1)

∂2p

∂x2
=

4km

3

∂2n

∂x2
,

∂2u

∂x2
=

∂p

∂x
− km

3

∂n

∂x
, (3.2 a,b)

and we emphasise that we consider uniform growth, for which km and kd are constant.

The axial boundary conditions presented in §2.1 require modification since the channel

is now semi-infinite in extent. Integration of equation (3.2a) yields

p =
4km

3
n + α(t)x + β(t), (3.3)

where α(t), β(t) are arbitrary functions of time; application of the boundary conditions

p = Pu, n = 0 at x = 0, p = Pd, n = 0 as x → ∞ indicates that we require α = 0,

β = Pu = Pd. A pressure drop-induced flow may therefore not be imposed; instead, we

impose an upstream flow, U
∗

, corresponding to u(x = 0, t) = U , where U = U
∗

/U∗

w is

the dimensionless upstream flowspeed. In the following, we choose U = 1, which sets the

velocity scale to be U∗

w = U
∗

. The value of the up- and downstream pressure is arbitrary
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and we choose Pu = 0 = Pd without loss of generality. We remark that the lengthscale,

L∗, is now defined by our choice of growth rate according to km = k∗

mL∗/U∗

w, so that

the lengthscale of interest is the distance travelled by a fluid particle over the growth

timescale. Appropriate boundary conditions are

p = 0, n = 0, u = 1, at x = 0, (3.4)

p = 0, n = 0,
∂u

∂x
= 0, as x → ∞. (3.5)

Equation (3.3) (with α = β = 0) allows us to obtain a reduced model in terms of the cell

volume fraction (n) and axial velocity (u) only (details omitted).

3.1 Sharp interface limit: D = 0

We now consider the regime in which the interfaces between the tissue construct and

surrounding culture medium are sharp, corresponding to D = 0. The domain is then

decomposed into three distinct regions by planar interfaces. We denote the interfacial

positions by x = L(t), R(t), across which we impose continuity of velocity and normal

stress:

[u]
+

−
= 0,

[
−p +

4

3

∂u

∂x

]+

−

= 0 at x = L(t), R(t). (3.6)

In (3.6), we have adopted the notation [..]+
−

to denote the jump across an interface, the

superscript + indicating the limiting value x = L(t) or x = R(t) from within L(t) 6

x 6 R(t). The evolution of the interfacial positions x = L(t), R(t) is determined from

the following kinematic conditions which ensure that particles on the interfaces remain

there:
dL

dt
= u(L, t),

dR

dt
= u(R, t). (3.7)

For simplicity we consider a growing construct of uniform density, represented as follows:

n(x, t) =

{
n(t) L(t) 6 x 6 R(t),

0 otherwise.
(3.8)

It is then straightforward to integrate equations (3.2) to determine:

u = 1, p = 0, 0 6 x < L(t), (3.9)

u = kmn (x − L(t)) + 1, p =
4

3
kmn, L(t) 6 x 6 R(t), (3.10)

u = kmn (R(t) − L(t)) + 1, p = 0, x > R(t). (3.11)

The evolution of the cell distribution is determined from equation (3.1), which yields the

following well-known logistic growth behaviour:

n(t) =
n(0)Kert

K + n(0)(ert − 1)
, (3.12)

in which n(0) is the initial cell density, r = km − kd is the net growth rate and K =

1 − kd/km is the carrying capacity.

Using (3.7), we deduce that the interfacial positions of the growing tissue construct
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can be written:

L(t) = t + L(0), R(t) =
R(0) − L(0)

K

{
K + n(0)

(
ert − 1

)}
+ L(t), (3.13)

where L(0) and R(0) are the initial interfacial positions. These solutions show that the

construct is advected with the imposed flow (u(x = 0, t) = 1); furthermore, its width,

given by R(t)−L(t), increases exponentially due to growth of the cell phase. We note here

that our model predicts axially asymmetric tissue growth: equations (3.13) show that the

upstream interface is advected at the speed of the imposed flow, whilst advection of the

downstream interface is augmented by tissue growth. This growth asymmetry is evident

for both static (in which L(t) = L(0)) and dynamic culture conditions.

3.1.1 Linear stability analysis

The stability properties of such one-dimensional tissues have been analysed by a number

of authors, especially in the context of solid tumour growth; see e.g. [21, 23], in which the

effects of material properties and limited nutrient availability on the stability of tumours

of constant density were considered and the results used to characterise the malignancy

and fingering instability of such tumours. Here, we consider the effect of an imposed flow

on the stability of a growing tissue to disturbances in the transverse direction. Specifically,

we consider perturbations to the interfaces which define the construct size and to the cell

density within this construct.

We perturb the planar interfaces L(t), R(t) as follows:

L(y, t) = L0(t) + ǫL1(y, t) + · · · , (3.14)

R(y, t) = R0(t) + ǫR1(y, t) + · · · , (3.15)

where 0 < ǫ ≪ 1/
√

k ≪ 1 and we have adopted the following notation: L0, R0 are the

planar interfaces defined by (3.13) and L1, R1 are perturbations. Correspondingly, we

seek solutions to the governing equations of the form:

n(x, y, t) = n0(x, t) + ǫn1(x, y, t) + · · · , (3.16)

where n0 is the one-dimensional solution (3.8), and we consider similar expansions for u,

v and p. We remark that the subscript notation which previously indicated the terms in

the large drag expansion (2.16) has been replaced by subscripts denoting the solutions

associated with the planar interfaces and perturbations. This calculation follows the

methodology presented in [21, 23], and so much of the detail is omitted.

Returning to the two-dimensional system given by equations (2.18), (2.20) and (2.22),

we find that the perturbations to the cell volume fraction, pressure and velocity satisfy

∇ · u1 = kmn1, ∇2
u1 = ∇p1 −

km

3
∇n1, (3.17 a,b)

∂n1

∂t
+ 2kmn0n1 + u0

∂n1

∂x
= (km − kd)n1. (3.18)

Following [21], we have employed equation (2.18) in preference to (2.21). Appropriate

boundary conditions, consistent with the leading-order axial conditions (3.4) and (3.5)
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and the transverse conditions (2.23), are:

u1 = 0, v1 = 0, p1 = 0, n1 = 0, at x = 0, (3.19)

∂u1

∂x
= 0, v1 = 0, p1 = 0, n1 = 0, as x → ∞, (3.20)

∂u1

∂x
= kmn1 −

∂v1

∂y
, v1 = 0,

∂n1

∂y
= 0,

∂p1

∂y
= 0, at y = 0, h. (3.21)

Jump conditions on the interface x = L(y, t) are derived by expanding the continuity

of stress and velocity conditions about x = L0(t). At O(ǫ), we obtain the following

conditions at x = L0(t):

[
−p1 +

4

3

∂u1

∂x
− 2

3

∂v1

∂y

]+

−

= 0,

[
2kmn

∂L1

∂y
+

∂u1

∂y
+

∂v1

∂x

]+

−

= 0, (3.22)

u+
1 + kmnL1 = u−

1 , [v1]
+

−
= 0. (3.23)

Similar conditions apply at x = R0. The perturbations to the interfaces are governed by

the following kinematic conditions:

∂L1

∂t
= u−

1 = u+
1 + kmnL1,

∂R1

∂t
= u−

1 = u+
1 + kmnR1, (3.24)

which are applied at x = L0(t) and x = R0(t), respectively.

To summarise, we now determine the stability of the one-dimensional tissue defined

by equations (3.8), (3.12) and (3.13) from the solution of the system (3.17)–(3.24). We

proceed by assuming that the perturbations to the interfacial positions are separable, of

the form

L1(y, t) = l1(t) cos(λy), R1(y, t) = r1(t) cos(λy), (3.25)

for arbitrary wavenumber λ, and seek solutions for n1 of a like form:

n1(x, y, t) =

{
ñ(t) cos(λy) L0 6 x 6 R0,

0 otherwise.
(3.26)

In view of the boundary condition (3.21), we find λ = qπ/h, for integer q. Using (3.18),

we deduce:

ñ(t) =
Gert

[K + n(0)(ert − 1)]
2
, (3.27)

in which G is arbitrary (we set G = 1 in the following without loss of generality).

We now introduce a subscript i to denote the region in which the solution is valid;

the regions i = 1, 2, 3 correspond to 0 6 x < L0, L0 6 x 6 R0, x > R0, respectively.

Following [21], we write u1i = fi(x, t) cos(λy) and from equations (3.17) we obtain

v12 =

(
kmñ − ∂f2

∂x

)
sin(λy)

λ
, p12 =

(
1

λ2

∂3f2

∂x3
− ∂f2

∂x
+

4kmñ

3

)
cos(λy), (3.28)

which are consistent with the remaining transverse boundary conditions (3.21). Corre-

sponding solutions are obtained in the up- and downstream regions (in which ñ is absent).

Considering the axial component (3.17b), we find that the functions fi are given by

fi(x, t) = [Ai(t) + Bi(t)x] eλx + [Ci(t) + Di(t)x] e−λx. (3.29)
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After some algebra, the twelve functions, Ai(t)–Di(t) may be specified in terms of the

planar interfaces L0(t), R0(t), the interface perturbation amplitudes l1(t), r1(t) and the

cell distributions n(t), ñ(t) (details omitted for concision). Equations (3.24) then yield

dl1
dt

= A1

[
eλL0 − e−λL0

]
,

dr1

dt
= C3e

−λR0 , (3.30)

where L0, R0 are defined by (3.13) and A1 and C3 are given by:

A1 =
kmn

2

(
l1e

−λL0 − r1e
−λR0

)
+

kmñ

2λ

(
e−λR0 − e−λL0

)
, (3.31)

C3 = kmn [r1cosh(λR0) − l1cosh(λL0)] +
kmñ

λ
[sinh(λR0) − sinh(λL0)] . (3.32)

Equations (3.30) are solved numerically using a MATLAB initial value problem solver,

which employs an explicit Runge-Kutta formula to compute the solution to non-stiff

problems. Figure 2 shows how the perturbations evolve over time for different values of

the constant growth rate, km.
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Figure 2. The growth of the perturbation amplitudes l1 and r1 for different values of the
growth rate, km; the arrows indicate the direction of increasing km. Parameter values: kd = 0.1,
q = 2, h = 1, n(0) = 0.2, L0(0) = 4, R0(0) = 6. Initial conditions: l1(0) = 0.2 = r1(0).

Figure 2 shows that there are marked differences in the behaviour of the perturbations

to each interface: the amplitude of the upstream perturbation (l1) decreases monoton-

ically with time, passing through zero; conversely, the amplitude of the downstream

perturbation (r1) increases monotonically. The effect of this phenomenon on the be-

haviour of the interfaces x = L(y, t), R(y, t) for the q = 2 mode is illustrated in figure

3, showing how the reversal of sign of the upstream perturbation amplitude corresponds

to a dramatic difference in the behaviour of the up- and downstream interfaces. This

behaviour is due to the perturbation to the cell volume fraction, n1 = ñ cos(λy) whose

transverse variation results in invagination in the sparse regions and protrusion in the

dense regions, as depicted in figure 3. In the absence of transverse perturbations to the

cell volume fraction (n1 = 0), the tissue density is spatially uniform and the perturbations

to each interface do not exhibit this behaviour, both l1 and r1 increasing monotonically

at exactly the same rate (as reported in [21]); we note that in this case the growth rate
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of the up- and downstream perturbation amplitudes is lower than that observed for the

downstream interface in the regime for which n1 6= 0 (details omitted).

Inspection of equations (3.31) and (3.32) indicates that the influence of n1 on the

stability of the interfaces diminishes with increasing wavenumber, λ(q): as λ increases,

the growth of the perturbation amplitudes l1, r1 tends to that observed in the absence of

perturbations to the cell volume fraction (n1 = 0). Furthermore, equation (3.27) shows

that for large time (t ≫ r−1), n1 decays to zero (in order that we remain within the

linear regime we require ǫ ert ≪ 1); indeed, for large time, equations (3.30) reduce to

dl1
dt

∼

km − kd

2
l1,

dr1

dt
∼

km − kd

2
r1, (3.33)

and the one-dimensional solution for which n(x, t) = n(t), L0(t) 6 x 6 R0(t) is therefore

unstable to small transverse perturbations if the net growth rate is positive (we remark

that both the amplitude of the perturbations and the construct width increase exponen-

tially with time). It is interesting to note that the stability of the interfaces x = L0, R0

is largely unaffected by the presence of the ambient flow, which only enters the analysis

through the advection of the interfaces (see equation (3.13)). Qualitatively similar results

are obtained in the zero flow regime (results omitted).

x

y

L0(t) R0(t)

L1(y, t) R1(y, t)

high density

high density

low
density

Figure 3. The effect of perturbation, n1 on the evolution of the perturbations L1(y, t) and
R1(y, t) for the q = 2 mode; the arrows show the direction of increasing time.

In the preceding analysis, we have considered the growth and stability of a tissue de-

fined by two planar interfaces within a perfusion bioreactor. For convenience, the bioreac-

tor was modelled as a channel of infinite length; the influence of considering a finite-length

bioreactor on the stability properties of this tissue is determined by performing a linear

stability analysis in an identical fashion to that given above, with the conditions at in-

finity now imposed on the truncated boundary, x = X (details omitted). As discussed

previously, the lengthscale L∗ is defined in terms of the growth timescale; the domain

length, X , is the number of multiples of this. Equations (3.24) are integrated numerically

to yield the behaviour of the perturbations; we find that the up- and downstream planar

interfaces are again unstable to transverse perturbations (provided that the net growth

rate is positive); the growth rates of the perturbations, l1 and r1 match those predicted

by the linear stability analysis on an infinite domain provided that the interfaces do not

approach x = X (as reported in [21, 23] and illustrated in figure 4).
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Figure 4. The evolution of the amplitude of the perturbations l1, r1, for the infinite and
finite domains as the domain length, X, varies. km = 1, other parameter values as in figure 2.

3.2 Numerical solution: D 6= 0

We now present numerical solutions of the one-dimensional equations (3.1) and (3.2)

on the truncated domain 0 6 x 6 1 subject to (3.4) and (3.5); the conditions specified

as x → ∞ are now imposed at x = 1. We emphasise that, in contrast to the previous

section, this system represents a diffuse tissue construct. To illustrate the behaviour of

our one-dimensional model, we consider a small cell population intially situated near the

upstream end of the bioreactor as follows:

n(x, 0) = 0.1 [tanh(50(x − 0.095))− tanh(50(x − 0.15))] . (3.34)

Solutions are calculated with the NAG routine D03PCF which uses a backward differen-

tiation method to solve the system of ordinary differential equations that emerge when

the original PDEs are spatially discretised using finite differences.

The evolution of n and u is shown in figure 5. Results for the pressure, p are omitted

since it is directly proportional to n (see equation (3.3)). To validate these numeri-

cal simulations, in figure 6, we compare the positions of the up- and downstream con-

struct boundaries predicted by the sharp interface analysis (equations (3.13)) and the

numerically-calculated results for a diffuse construct. The positions of the boundaries of

the diffuse construct are taken to be the up- and downstream half-maximal values of n;

in equations (3.13), n(0) is approximated by the maximum value of n(x, 0). In figure 7,

we compare the evolution of the numerically-computed maximum cell volume fraction

and the logistic growth predicted by (3.12).

Inspection of figures 5–7 shows that the analytical solutions (3.9)–(3.13), correspond-

ing to a growing tissue construct of uniform density defined by two sharp interfaces,

capture much of the qualitative behaviour of the full one-dimensional model (3.1), (3.2),

(3.4) and (3.5). Figure 5 shows how the cell population is advected downstream by the

flow: the diffuse upstream interface moves with constant speed, while the downstream

interface is advected at a rate which increases with increasing cell density, and the con-

struct domain elongates accordingly. Figure 6 shows that the positions of these diffuse

interfaces are in good agreement with the sharp interfaces defined by equations (3.13).

We highlight that, as indicated by figure 5(a), as t increases towards t = 0.48, the con-
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Figure 5. A plot of (a) the cell volume fraction, n, and (b) the velocity, u, at t = 0 − 0.48 in
steps of t = 0.04. Parameter values: D = 0.0005, km = 10, kd = 0.1.
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Figure 6. (a) A comparison between the numerically-computed positions of the diffuse inter-
faces and the sharp interfaces defined in (3.13); (b) the % relative error. Parameter values as in
figure 5.
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Figure 7. A comparison between the numerically-computed peak cell density (–) and the lo-
gistic growth predicted by the sharp interface solution (3.12) (- -). Parameter values as in figure
5.
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struct approaches the downstream domain boundary and meaningful comparison cannot

be made. In addition, figure 5(a) indicates that the evolution of the peak cell density ap-

proximates the logistic growth predicted by (3.12) which is sigmoidal for n(x, 0) < K/2

[47] (where K = 1 − kd/km is the carrying-capacity): following the initial fast growth

phase, the peak cell density increases more slowly, tending towards K. In figure 7 we

show that the numerically-calculated peak cell density is in good agreement with that

predicted by equation (3.12). We remark that the imposed flow advects the construct to

the end of the domain before the steady-state value n = K = 0.99 can be attained.

The numerically-computed velocity profile, shown in figure 5(b), is constant prior to

(and after) the tissue, increasing approximately linearly within, with gradient kmn(x, t)

(see equation (3.10)) as demanded by the continuity equation (2.18); the downstream ve-

locity increases approximately exponentially with time, as predicted by equations (3.11)–

(3.13) (details omitted).

In this section, we have studied the effect of an ambient flow on a one-dimensional

tissue construct whose rates of growth and death remain constant. Analytic solutions

constructed in the limit for which the interfaces between the growing cell phase and the

surrounding culture medium are sharp, were shown to be in good qualitative agreement

with numerical simulations for a diffuse cell population. In each case, the effect of the

flow is to advect the cells downstream. We find that the stability of the sharp interfaces

to transverse perturbations is largely unaffected by the imposed flow; however, the early-

time behaviour of these interfaces is dramatically altered by perturbations to the cell

volume fraction and we observe markedly different behaviour to that reported in [21].

In the context of the bioreactor system described in §1, this model predicts that the

cells and ECM will be advected through the bioreactor at the speed of the imposed

perfusion. A long bioreactor or a low flow rate is therefore required to prevent tissue

from being flushed out of the bioreactor before tissue growth can be achieved. This

prediction is due to the simplifying limit of large interphase drag, in which each phase

moves with common velocity.

4 Two-dimensional simulations

4.1 Uniform growth

We now present numerical solutions to the two-dimensional equations (2.20)–(2.22) in the

domain 0 6 x 6 1, 0 6 y 6 h subject to the boundary conditions (2.23)–(2.25). Equation

(2.20) is solved using a semi-implicit time-stepping method; the linear systems associated

with the spatially-discretised equations (2.20)–(2.22) and corresponding boundary con-

ditions are solved using the Gaussian elimination routine in MATLAB at each time step.

Spatial discretisation is performed using central finite differences; an upwind scheme is

used for the convective terms in equation (2.20). Numerical accuracy is maintained via

spatial and temporal mesh refinement. For brevity, the full discretisation is omitted here.

To illustrate the behaviour of the model, we focus on how an initially y-independent

cell population (corresponding to a uniform cell seeding across the scaffold width) subject

to constant cell proliferation and death evolves in response to the imposed flow. Other

initial conditions relevant to cell growth on porous scaffolds (such as the more uniform
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distributions achieved via dynamic seeding on a cortical shaker [64] or cells seeded around

the scaffold’s periphery) may easily be investigated and will form part of a subsequent

study. We choose a similar initial condition to (3.34) as follows:

n(x, 0) = 0.1 [tanh(50(x − 0.4)) − tanh(50(x − 0.5))] . (4.1)

Plots of the cell volume fraction, pressure and axial and transverse velocity components

are shown in figures 8–12.
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Figure 8. (a) A contour plot and (b) a surface plot of the cell volume fraction showing the
effect of a pressure-induced flow on tissue construct morphology at t = 0.6. Parameter values:
h = 1, km = 4, kd = 0.1, D = 0.001, Pu = 1, Pd = 0.
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Figure 9. The evolution of the centreline value of the cell volume fraction at successive times
t = 0 − 0.6 in steps of t ≈ 0.05. Parameter values as in figure 8.

Figures 8 and 9 show how the initially sparse, y-independent construct given by (4.1)

grows and spreads through the channel. The evolution of the cell volume fraction at the

channel centreline is shown in figure 9 indicating the advection of the tissue construct

along the bioreactor. The cells are advected along the channel by the axial velocity, u,

which is parabolic in y. This pressure-induced parabolic flow increases advection in the

channel centre where flow speed is maximal, introducing significant transverse variation.

A parabolic flow profile is obtained since the model does not account for the influence of

the porous scaffold on the fluid dynamics of the bioreactor which leads to a “plug flow”

profile within the scaffold. Our model therefore overestimates the amount of transverse

variation induced in the cell population by the flow. The influence of the scaffold will be
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Figure 10. (a) A contour plot and (b) a surface plot showing the pressure distribution
corresponding to the tissue construct in figure 8. Parameter values as given in figure 8.
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Figure 11. A surface plot of the axial velocity profile corresponding to the tissue construct in
figure 8. Parameter values as given in figure 8.
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Figure 12. (a) A contour plot and (b) a surface plot showing the transverse velocity
corresponding to the tissue construct in figure 8. Parameter values as given in figure 8.

accounted for in a subsequent study. We remark that the solution for the axial velocity, u,

is unique up to the addition of an arbitrary one-dimensional solution, û; we have chosen

û = 0 so that no-slip is assured prior to the tissue; within and downstream from it the

slip velocity is significant.

The advection/growth behaviour of the tissue construct warrants further discussion.
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Comparison of the profiles shown in figure 8 and the initial condition (4.1) shows that

advection of the upstream periphery of the diffuse construct is greatest at the channel

centreline (y = h/2) where the parabolic flow is maximal. Near the channel walls, where

the flow speed is low, limited upstream movement is observed due to the presence of

diffusion (for a larger diffusion coefficient than that employed in §3.2, this behaviour is,

of course, also observed in the case of a one-dimensional diffuse tissue). Corresponding

transverse variation is induced in the downstream periphery; however, it displays signif-

icantly greater axial advection due to the greater flow speed there. In the absence of an

imposed flow (Pu = 0 = Pd), the resulting cell population remains independent of the

transverse coordinate. However, the population does not grow symmetrically about the

midpoint of the initial distribution: the upstream periphery remains almost stationary

while the downstream periphery spreads downstream (results omitted). In each case,

this axially asymmetric advection behaviour is predicted by the one-dimensional, sharp

interface analysis which indicates that the upstream interface moves at the speed of

the imposed flow, the advection of the downstream interface being augmented by tissue

growth (see equation (3.13)).

Figure 10 shows how the pressure distribution is affected by the presence of the cells.

Up- and downstream from the tissue the pressure field decreases linearly with x; an

increase in pressure is observed as the fluid flows through the area in which cells are

present. As in the one-dimensional case (§3), the deviation from the linear pressure

profile mirrors the cell distribution shown in figure 8. Similarly, the axial velocity profile

shown in figure 11 is greatly affected by the cells’ presence. Upstream, the cells do not

influence the flow and u remains x-invariant; however, where n 6= 0 the axial flow speed

increases with x in an approximately linear fashion, the gradient increasing with n as

required by (2.18). Again, this behaviour was indicated by the one-dimensional analysis;

see equations (3.9)–(3.11) and figure 5(b). We note that the choices Pu = 1, Pd = 0 set

the velocity scale, U∗

w, used in the non-dimensionalisation (2.9) to be U∗

w = P ∗

uL∗/µ∗

w.

In the absence of cells, the maximum axial velocity is given by u∗ = P ∗

uh∗2/(8µ∗

wL∗); for

the parameter choice given we therefore expect the maximum upstream dimensionless

velocity to be u = 1/8. Figure 11 confirms this.

The transverse component of velocity (v) is initially small due to the one-dimensional

initial cell population. However, as n increases, transverse variation is introduced within

the tissue construct and v increases, achieving maxima on the periphery of the construct

(see figures 8 and 12). We note that the magnitude of the axial velocity, u, is much greater

than the transverse velocity, v. This is because we impose an axial pressure gradient to

drive the flow and, due to the no-penetration boundary conditions, the resistance to

transverse motion in the channel is greater.

4.2 Mechanotransduction

The dominant mechanical stimuli relevant to specific tissue engineering applications have

not all been elucidated. By extending our model to consider the effect of coupling the

growth of the cell population to the local environment, we can determine the charac-

teristic growth pattern associated with specific mechanical stimuli; in tandem with ex-

perimental data, this will allow optimisation of culture conditions to enhance yield. For



A two-fluid model for tissue growth within a dynamic flow environment 21

illustrative purposes, we consider the response of the cells to the following stimuli: contact

inhibition caused by cell-cell interactions, the effect of stress caused by increases in local

cell density and the influence of the external fluid dynamics. The coupling is achieved

by modifying the net mass production term, Sn. We remark that since the “cell” phase

comprises cells and ECM, modifying the growth and death rates (km, kd) in response

to local environmental factors enables crude modelling of a phenotypic switch due to

mechanical stimuli from, for instance, a proliferative phase to an ECM-producing phase.

The relevance of the following work hinges upon the appropriate choice of Sn. We

restrict attention to the following cell density and pressure-dependent responses:

1. Cell density-dependent response: Sn = [km(n) − kd] n = κ(n)n;

2. pressure-dependent response: Sn = [km(p) − kd] n = κ(p)n,

in which km, kd are the rates of growth and death, respectively. For ease, the death rate

kd is kept constant; the coupling of cell behaviour and the mechanical environment is

captured entirely through the growth rate, km.

We now motivate these choices. Although not explicitly modelled, the choice km(n)

enables us to capture the effect of contact inhibition [10] and tissue growth-induced

stress [24, 57] on cell behaviour. Furthermore, since the pressure, p, represents a “lumped

pressure” (p = pw0 +n0Σn0; see §2.1), the choice km(p) incorporates these considerations

as well as the cells’ response to the culture medium pressure. The response of cells

to culture medium pressure is well documented, especially with respect to bone tissue

growth; for example, many authors have shown that bone cells respond to intermittent

hydrostatic compression with diminished bone resorption and enhanced bone formation

([34] and references therein), increased adhesion [27] and increased osteopontin (a protein

implicated in the bone remodelling process) expression [48]. Excessively high hydrostatic

pressure (> 200kPa) has been shown to exert an inhibitory effect on bone-specific gene

expression [56].

Considering first the density-dependent behaviour described above, we identify three

distinct stages in the behaviour of the cell population: (i) a proliferative phase, (ii) an

ECM-producing phase, and (iii) an apoptotic phase. At low density, the cells proliferate

at a rate, km(n) = k1n; at intermediate density, due to the additional production of

ECM, the growth rate of the cell phase is modified to a new value, km(n) = k2n (we

assume k2n > k1n); finally, when the local density is too high, the cells enter an apoptotic

phase (km(n) = 0) with death rate kd (we note that the “death rate”, kd includes ECM

degradation as well as cell death). The threshold cell densities that separate these three

types of behaviour are denoted n′

1 and n′

2.

Similarly, in the pressure-dependent regime, we assume that at intermediate levels of

pressure, the cells exhibit enhanced proliferation and ECM deposition (km(p) = k2p); at

low pressure, the cells enter a quiescent state in which proliferation and ECM deposition

is greatly reduced (km(p) = k1p < k2p); at excessively high levels, ECM deposition ceases

and the cells become apoptotic (km(p) = 0). The corresponding thresholds are denoted

p′1, p′2.

We now present numerical solutions of the two-dimensional equations (2.20)–(2.22)

subject to the boundary conditions (2.23)–(2.25) in which we employ the above choices
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for Sn; initial conditions are given by (4.1). We assume that the rates of growth and

death of the cell phase (k1n, k1p, k2n, k2p, kd) are constant and represent the proliferative

responses described above with a smoothed step function, as defined below:

κ(ϕ) =
k2ϕ − k1ϕ

2
{tanh (g [ϕ − ϕ′

1]) − 1}

−k2ϕ

2
{tanh (g [ϕ − ϕ′

2]) − 1} − kd. (4.2)

In (4.2), ϕ represents the stimulus in question, with corresponding threshold values ϕ′

1, ϕ′

2

and the parameter g dictates the level of smoothing; we note that smoothing is necessary

in order to obtain numerical solution. Figure 13 shows a sketch of the function k(ϕ),

highlighting the progression from one phase to the next.

The effect of these choices of mass production term on the morphology of the resulting

tissue is shown in figures 14 and 15.

ϕ

κ(ϕ)

ϕ′

1 ϕ′

2

k1ϕ − kd

k2ϕ − kd

−kd

︷ ︸︸ ︷ ︷ ︸︸ ︷

︷ ︸︸ ︷apoptosis

mitosis and
ECM deposition

proliferation/
quiescence

Figure 13. Schematic representation of the progression of a cell population through a number
of growth phases in response to a stimulus, ϕ = n, p.
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Figure 14. (a) A contour plot and (b) a surface plot showing the effect of the cell density-
dependent proliferative response given by (4.2) on tissue construct morphology at t = 0.65.
Parameter values: h = 1, k1n = 4, k2n = 5, kd = 0.1, n′

1 = 0.5, n′

2 = 0.6, g = 60, D = 0.001,
Pu = 1, Pd = 0.

Figure 14 illustrates that when the cells’ response is density-dependent, the growth of

the cell phase is arrested at n = n′

2 due to the smoothed progression from proliferation
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Figure 15. (a) A contour plot and (b) a surface plot showing the effect of the pressure-
dependent proliferative response given by (4.2) on tissue construct morphology at t = 0.8.
k1p = 5, k2p = 7, p′

1 = 0.5, p′

2 = 0.8, g = 15; other parameter values as in figure 14.

and ECM-production (κ(n) = k2n−kd) to apoptosis (κ(n) = −kd). We note that despite

the presence of apoptosis in this formulation, regression back to the proliferative phase

ensures that the cell density does not fall below n = n′

2.

Figure 15 shows the response of the cell phase to pressure-dependent growth. Rather

than being arrested at a threshold density the cells become apoptotic where the pressure

is high (near the upstream diffuse interface and in regions of high cell density; see figure

10) and proliferation is reduced near x = 1 (where the pressure is low); between these

regions, growth is enhanced. The result of this spatial variation in proliferative rate is

a tissue construct which grows preferentially downstream in the regions of intermediate

pressure.

Comparison of the cell phase distribution in each of the above growth regimes with that

obtained in the case of constant growth and death rates (figures 8, 14 and 15) shows that

the composition of the tissue construct is dramatically affected by coupling the growth

response of the cells to their environment. When cell proliferation and ECM deposition

are density-dependent, a uniform tissue construct is obtained; in the pressure-dependent

case, the predicted tissue construct composition is far less uniform. It is interesting to note

that in the absence of an imposed flow, the pressure field is directly proportional to the

cell phase distribution (see equation (3.3)) and the cell density- and pressure-dependent

responses are identical. Inspection of the morphology of tissue constructs produced in

static and dynamic culture, together with the characteristic growth patterns predicted

by this model, therefore provides a simple means to identify the dominant regulatory

growth stimulus in a cell population.

5 Discussion

In this paper, we have studied tissue growth in a perfusion bioreactor which is represented

by a two-dimensional channel containing a two phase mixture of interacting viscous

fluids. The cells and ECM were modelled as a single phase; the second phase represented

the culture medium. Guided by parameter estimation, we employed the limit of large
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interphase drag, in which we may describe each phase as being subject to a common

velocity and pressure field.

We have considered the effect of a dynamic flow environment on tissue growth pro-

cesses. Analytic predictions were obtained in the limit of a one-dimensional growing

tissue defined by two sharp interfaces, between which the cell density remains spatially

invariant. The cell phase displayed logistic growth, the interfaces were advected by the

ambient flow and the tissue width increased exponentially. The stability of this tissue

to periodic transverse perturbations was investigated, and the interfaces were found to

be unstable; the long-time stability being regulated only by the net growth rate. In the

presence of a corresponding perturbation to the cell volume fraction, the perturbations

to the upstream interface reversed sign due to the variation in construct density. This

effect diminished with increasing perturbation wavenumber and decayed to zero for large

time.

Using numerical simulations in one and two-dimensions, the behaviour of a diffuse

tissue construct under an ambient flow was calculated for constant growth and death

rates and the advection behaviour predicted by the sharp interface analysis was observed,

indicating that this asymptotic limit captures much of the qualitative behaviour of the

full system. In the two-dimensional model, transverse variation in the tissue construct

density was induced by the parabolic flow of culture medium; small transverse flows were

induced at the construct periphery.

Our analysis indicates that cells and ECM are advected through the bioreactor at the

same speed as the imposed flow, implying that a long bioreactor and/or a low rate of

perfusion is required in order to prevent the tissue from being flushed from the bioreactor

before tissue growth can occur. This is a consequence of the simplifying limit of large

interphase drag employed in this paper which demands that the cell and culture medium

phases are subject to a common velocity field.

We further extended this model formulation to account for complex coupling between

the cells’ proliferative response and their local environment. This was achieved by re-

placing the constant growth and death rates (km, kd) with appropriate functional forms.

Specifically, motivated by a range of studies, we considered the response of a cell pop-

ulation to the local density and pressure. Simulations were presented showing that the

growth of the cell population is profoundly altered by these effects, dramatically changing

the composition of the construct. These simulations clearly demonstrate the importance

of considering the effect of mechanotransduction mechanisms within tissue growth mod-

els. Furthermore, our model suggests that in static culture, regulation of proliferative

behaviour by cell density and culture medium pressure results in indistinguishable tissue

constructs. In principle, on provision of appropriate experimental data, this conclusion

provides a simple mechanism for the identification of the dominant regulatory mechanism

in a given cell population simply by observing the tissue construct morphology resulting

from culture in static and dynamic conditions. However, we note that we have not con-

sidered nutrient-limited growth which is expected to become significant in the absence

of perfusion (indeed, after many days in culture, delivery of nutrients to downstream

sections of the scaffold may be problematic even under perfusion, especially in scaffolds

of relevant clinical thickness) and may affect the robustness of our predictions [38]. The

influence of nutrient-limited growth will be a focus of future work.
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The proliferation/ECM deposition functions were chosen to reflect qualitatively a

simple mechanotransduction mechanism. Our model admits more complex functional

forms and dependence on combinations of the field variables; physiologically, it is ex-

pected that these effects are integrated in a complex way to produce the cells’ overall

response. The simple forms employed here allow clearer illustration of the importance of

mechanotransduction-affected growth within a tissue growth modelling framework; how-

ever, the mathematical formulation and numerical scheme developed is highly versatile,

permitting the study of more complex functional forms and an investigation of the inter-

play between many competing growth stimuli as appropriate experimental data become

available.

The model employed here is applicable to tissue growth processes in which the solid

characteristics of the system are unimportant. In a subsequent paper, we will present a

three phase formulation in which we distinguish between the ECM and cell phases and

consider mechanotransduction mechanisms in more detail. This more complex model will

allow further predictions regarding the effect of perfusion the composition and mechanical

integrity of the construct. Furthermore, the effect of cell-cell and cell-scaffold interactions

on cell movement will be studied.
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