Dr RUEDIGER THUL RUEDIGER.THUL@NOTTINGHAM.AC.UK
ASSOCIATE PROFESSOR
Subcellular calcium dynamics in a whole-cell model of an atrial myocyte
Thul, R�diger; Coombes, Stephen; Roderick, H. Llewelyn; Bootman, Martin D.
Authors
Professor Stephen Coombes STEPHEN.COOMBES@NOTTINGHAM.AC.UK
PROFESSOR OF APPLIED MATHEMATICS
H. Llewelyn Roderick
Martin D. Bootman
Abstract
In this study, we present an innovative mathematical modeling approach that allows detailed characterization of Ca 2+ movement within the three-dimensional volume of an atrial myocyte. Essential aspects of the model are the geometrically realistic representation of Ca 2+ release sites and physiological Ca 2+ flux parameters, coupled with a computationally inexpensive framework. By translating nonlinear Ca 2+ excitability into threshold dynamics, we avoid the computationally demanding time stepping of the partial differential equations that are often used to model Ca 2+ transport. Our approach successfully reproduces key features of atrial myocyte Ca 2+ signaling observed using confocal imaging. In particular, the model displays the centripetal Ca 2+ waves that occur within atrial myocytes during excitation-contraction coupling, and the effect of positive inotropic stimulation on the spatial profile of the Ca 2+ signals. Beyond this validation of the model, our simulation reveals unexpected observations about the spread of Ca 2+within an atrial myocyte. In particular, the model describes the movement of Ca 2+ between ryanodine receptor clusters within a specific z disk of an atrial myocyte. Furthermore, we demonstrate that altering the strength of Ca 2+ release, ryanodine receptor refractoriness, the magnitude of initiating stimulus, or the introduction of stochastic Ca 2+ channel activity can cause the nucleation of proarrhythmic traveling Ca 2+ waves. The model provides clinically relevant insights into the initiation and propagation of subcellular Ca 2+ signals that are currently beyond the scope of imaging technology.
Citation
Thul, R., Coombes, S., Roderick, H. L., & Bootman, M. D. (2012). Subcellular calcium dynamics in a whole-cell model of an atrial myocyte. Proceedings of the National Academy of Sciences, 109(6), 2150-2155. https://doi.org/10.1073/pnas.1115855109
Journal Article Type | Article |
---|---|
Publication Date | Feb 7, 2012 |
Deposit Date | Dec 21, 2012 |
Publicly Available Date | Dec 21, 2012 |
Journal | Proceedings of the National Academy of Sciences |
Print ISSN | 0027-8424 |
Electronic ISSN | 1091-6490 |
Publisher | National Academy of Sciences |
Peer Reviewed | Peer Reviewed |
Volume | 109 |
Issue | 6 |
Pages | 2150-2155 |
DOI | https://doi.org/10.1073/pnas.1115855109 |
Public URL | https://nottingham-repository.worktribe.com/output/1009427 |
Publisher URL | http://www.pnas.org/content/109/6/2150 |
Additional Information | Copyright: National Academy of Sciences |
Files
Thul-PNAS.pdf
(1.1 Mb)
PDF
You might also like
Oscillatory networks: insights from piecewise-linear modelling
(2024)
Journal Article
The two-process model for sleep–wake regulation: A nonsmooth dynamics perspective
(2022)
Journal Article
Word and Multiword Processing
(2022)
Book Chapter
Neural fields with rebound currents: Novel routes to patterning
(2021)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search