Skip to main content

Research Repository

Advanced Search

Outputs (106)

Control Strategy of Advanced Power Generation Architecture for More-Electric Aircraft Applications (2023)
Presentation / Conference Contribution
Bai, G., Yang, T., Yeoh, S. S., Bozhko, S., & Wheeler, P. (2023, July). Control Strategy of Advanced Power Generation Architecture for More-Electric Aircraft Applications. Presented at 2023 IEEE Workshop on Power Electronics for Aerospace Applications, PEASA 2023, Nottingham, United Kingdom

To meet the increasing electrical power demand on More Electrical Aircraft (MEA), an advanced power generation architecture (APGA) is proposed. Within the APGA, both two generators produce electrical power and feed loads to the main DC bus through th... Read More about Control Strategy of Advanced Power Generation Architecture for More-Electric Aircraft Applications.

Artificial Intelligence-Based Hierarchical Control Design for Current Sharing and Voltage Restoration in DC Microgrid of the More Electric Aircraft (2023)
Journal Article
Hussaini, H., Yang, T., Bai, G., Urrutia-Ortiz, M., & Bozhko, S. (2024). Artificial Intelligence-Based Hierarchical Control Design for Current Sharing and Voltage Restoration in DC Microgrid of the More Electric Aircraft. IEEE Transactions on Transportation Electrification, 10(1), 566-582. https://doi.org/10.1109/tte.2023.3289773

In the conventional droop control method employed in the primary control layer, there is an inherent tradeoff between current-sharing accuracy and voltage regulation. Consequently, to achieve both accurate current sharing and maintain the bus voltage... Read More about Artificial Intelligence-Based Hierarchical Control Design for Current Sharing and Voltage Restoration in DC Microgrid of the More Electric Aircraft.

High-Fidelity Model Identification for Synchronous Reluctance Motor Drives (2023)
Journal Article
Varvolik, V., Buticchi, G., Wang, S., Prystupa, D., Peresada, S., Bozhko, S., & Galea, M. (2023). High-Fidelity Model Identification for Synchronous Reluctance Motor Drives. IEEE Transactions on Energy Conversion, 38(4), 2623 - 2633. https://doi.org/10.1109/tec.2023.3277478

This article presents an accurate model identification method for the synchronous reluctance machine (SynRel), considering the nonlinear magnetic behavior and spatial harmonics. The availability of the high-fidelity magnetic model is essential for hi... Read More about High-Fidelity Model Identification for Synchronous Reluctance Motor Drives.

Simplified Modelling and Control of Dual Active Bridge Converter for Future Electrified Aerospace Application (2023)
Presentation / Conference Contribution
Yan, X., Zhu, Y., Wang, Z., Yang, T., Bozhko, S., & Wheeler, P. (2023, March). Simplified Modelling and Control of Dual Active Bridge Converter for Future Electrified Aerospace Application. Presented at 2023 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference, ESARS-ITEC 2023, Venice, Italy

Dual active bridge converter (DAB) is an important power electronics in the DC distribution system of electric aircraft. It is used to convert generated high DC voltage to lower DC voltage, and it can be used between battery and low voltage bus to st... Read More about Simplified Modelling and Control of Dual Active Bridge Converter for Future Electrified Aerospace Application.

Optimal Droop Control Design Using Artificial Intelligent Techniques for Electric Power Systems of More-Electric Aircraft (2023)
Journal Article
Hussaini, H., Yang, T., Gao, Y., Wang, C., Urrutia, M., & Bozhko, S. (2024). Optimal Droop Control Design Using Artificial Intelligent Techniques for Electric Power Systems of More-Electric Aircraft. IEEE Transactions on Transportation Electrification, 10(1), 2192-2206. https://doi.org/10.1109/tte.2023.3271763

The design of the droop coefficient is one of the challenges for the droop control of converters, as it plays a key role in enhancing the performance of the droop control method. This article proposes an artificial neural network (ANN) based techniqu... Read More about Optimal Droop Control Design Using Artificial Intelligent Techniques for Electric Power Systems of More-Electric Aircraft.

An Advanced Power Generation Architecture for More-Electric Aircraft Applications (2023)
Presentation / Conference Contribution
Bai, G., Yang, T., Yeoh, S. S., Bozhko, S., & Wheeler, P. (2023, March). An Advanced Power Generation Architecture for More-Electric Aircraft Applications. Presented at 2023 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Venice, Italy

The trend towards development of More Electric Aircraft (MEA) has been driven by increased fuel fossil prices and stricter environmental policies. With breakthroughs in power electronic systems and electrical machines, the targets of MEA to reduce th... Read More about An Advanced Power Generation Architecture for More-Electric Aircraft Applications.

Enhanced Starting Control Scheme for PMM-Based Starter/Generator System for MEA (2023)
Journal Article
Mohamed, M. A. A., Shen Yeoh, S., Atkin, J., Diab, A. M., Khalaf, M., & Bozhko, S. (2023). Enhanced Starting Control Scheme for PMM-Based Starter/Generator System for MEA. Aerospace, 10(2), Article 168. https://doi.org/10.3390/aerospace10020168

A control approach for aircraft Starter/Generator (S/G) with Permanent Magnet Machine (PMM) operating in Flux Weakening (FW) mode is presented. The proposed strategy helps the previous approaches which are adopted for the Variable Voltage Bus (VVB) o... Read More about Enhanced Starting Control Scheme for PMM-Based Starter/Generator System for MEA.

Sliding Mode Input Current Control of the Synchronous DC-DC Buck Converter for Electro-Mechanical Actuator Emulation in More Electric Aircrafts (2022)
Journal Article
Salimi, M., Klumpner, C., & Bozhko, S. (2022). Sliding Mode Input Current Control of the Synchronous DC-DC Buck Converter for Electro-Mechanical Actuator Emulation in More Electric Aircrafts. Energies, 15(24), Article 9628. https://doi.org/10.3390/en15249628

The main challenges of the input current control in synchronous DC-DC buck converters are the nonlinear model of the system, changes of the operating point in a wide range, and the need to use an input LC filter for current smoothing, which may resul... Read More about Sliding Mode Input Current Control of the Synchronous DC-DC Buck Converter for Electro-Mechanical Actuator Emulation in More Electric Aircrafts.

Performance Analysis of Complex Vector Discrete Current Controller for High-Speed Permanent Magnet Machines (2022)
Presentation / Conference Contribution
Diab, A. M., Aboelhassan, A., Wang, S., Guo, F., Yeoh, S. S., Bozhko, S., Rashed, M., & Galea, M. (2022, December). Performance Analysis of Complex Vector Discrete Current Controller for High-Speed Permanent Magnet Machines. Presented at 2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA), Chengdu, China

Discrete synchronous reference frame proportional integral Current Controller (CC) delivers superior control performance for high-speed drives due to its ability to accurately compensate for cross-coupling terms. Complete compensation can only be ach... Read More about Performance Analysis of Complex Vector Discrete Current Controller for High-Speed Permanent Magnet Machines.

AC/DC Converter Topologies Comparison for More Electric Aircraft Applications (2022)
Presentation / Conference Contribution
Khera, F. A., Gerada, C., Bozhko, S., & Wheeler, P. W. (2022, December). AC/DC Converter Topologies Comparison for More Electric Aircraft Applications. Presented at 7th IEEE Southern Power Electronics Conference (IEEE SPEC 2022), Nadi, Fiji

This paper compares the potential AC/DC power converter topologies that are appropriate for medium voltage and medium/high power aircraft applications. The power converter's rated power and the DC distribution voltage level in this application assume... Read More about AC/DC Converter Topologies Comparison for More Electric Aircraft Applications.