Skip to main content

Research Repository

Advanced Search

Outputs (95)

Development of C. albican Anti-attachment Inkjet 3D Printing Ink, via High Throughput Screening (2025)
Presentation / Conference Contribution
Yong, L. X., Zhou, Z., Vallières, C., He, Y., Cuzzucoli Crucitti, V., Alexander, M. R., Avery, S., Wildman, R., & Irvine, D. (2024, August). Development of C. albican Anti-attachment Inkjet 3D Printing Ink, via High Throughput Screening. Presented at International Conference on Computational & Experimental Engineering and Sciences, Singapore, Singapore

The fungal pathogen Candida albicans (C. albicans) is particularly problematic for immunocompromised patients and those with medical implants. Introducing Candida-resistant medical devices could potentially reduce mortality rates from such infections... Read More about Development of C. albican Anti-attachment Inkjet 3D Printing Ink, via High Throughput Screening.

High resolution 3D printed biocatalytic reactor core with optimized efficiency for continuous flow synthesis (2024)
Journal Article
Attwood, S. J., Leech, D., He, Y., Croft, A., Hague, R. J., Irvine, D. J., Wildman, R. D., & Pordea, A. (2025). High resolution 3D printed biocatalytic reactor core with optimized efficiency for continuous flow synthesis. Chemical Engineering Science, 305, Article 121156. https://doi.org/10.1016/j.ces.2024.121156

3D printing has the potential to transform biocatalytic continuous flow reactor technology, where precise control of topology is essential for maximizing reactor performance. By embedding enzymatic catalysts in polymer hydrogel networks, continuous s... Read More about High resolution 3D printed biocatalytic reactor core with optimized efficiency for continuous flow synthesis.

Inkjet Printed Multifunctional Graphene Sensors for Flexible and Wearable Electronics (2024)
Journal Article
Wang, F., Heaton, C., Cottam, N., Austin, J., Im, J., Fromhold, T. M., Wildman, R. D., Hague, R. J. M., Tuck, C., Makarovsky, O., & Turyanska, L. (in press). Inkjet Printed Multifunctional Graphene Sensors for Flexible and Wearable Electronics. Advanced Electronic Materials, https://doi.org/10.1002/aelm.202400689

The exceptional electrical properties of graphene with high sensitivity to external stimuli make it an ideal candidate for advanced sensing technologies. Inkjet printing of graphene (iGr) can provide a versatile platform for multifunctional sensor ma... Read More about Inkjet Printed Multifunctional Graphene Sensors for Flexible and Wearable Electronics.

Additive manufacturing of functionalised atomic vapour cells for next-generation quantum technologies (2024)
Journal Article
Wang, F., Cooper, N., He, Y., Hopton, B., Johnson, D., Zhao, P., Tuck, C. J., Hague, R., Fromhold, T. M., Wildman, R., Turyanska, L., & Hackermueller, L. (2025). Additive manufacturing of functionalised atomic vapour cells for next-generation quantum technologies. Quantum Science and Technology, 10(1), Article 015019. https://doi.org/10.1088/2058-9565/ad8678

Atomic vapour cells are an indispensable tool for quantum technologies (QT), but potential improvements are limited by the capacities of conventional manufacturing techniques. Using an additive manufacturing (AM) technique—vat polymerisation by digit... Read More about Additive manufacturing of functionalised atomic vapour cells for next-generation quantum technologies.

Computer Vision for Substrate Detection in High-Throughput Biomaterial Screens Using Bright-Field Microscopy (2024)
Journal Article
Owen, R., Nasir, A., H. Amer, M., Nie, C., Xue, X., Burroughs, L., Denning, C., D. Wildman, R., A. Khan, F., R. Alexander, M., & R. A. J. Rose, F. (2024). Computer Vision for Substrate Detection in High-Throughput Biomaterial Screens Using Bright-Field Microscopy. Advanced Intelligent Systems, Article 2400573. https://doi.org/10.1002/aisy.202400573

High-throughput screening (HTS) can be used when ab initio information is unavailable for rational design of new materials, generating data on properties such as chemistry and topography that control cell behavior. Biomaterial screens are typically f... Read More about Computer Vision for Substrate Detection in High-Throughput Biomaterial Screens Using Bright-Field Microscopy.

Reactive prodrug strategy for addictive manufactured controlled release devices (2024)
Presentation / Conference Contribution
Di, M., Cuzzucoli Crucitti, V., Krumins, E., Lion, A., Wildman, R., Taresco, V., & He, Y. (2024, August). Reactive prodrug strategy for addictive manufactured controlled release devices. Paper presented at International Conference on Computational & Experimental Engineering and Sciences 2024, Singapore

Mechano-bactericidal activity of two-photon polymerized micro-and nanoscale topographies against Pseudomonas aeruginosa: Surface interactions and antibacterial efficacy (2024)
Journal Article
Tan, N., Im, J., Neate, N., Leong, C.-O., Wildman, R. D., Marsh, G. E., & Yee, M. S.-L. (2024). Mechano-bactericidal activity of two-photon polymerized micro-and nanoscale topographies against Pseudomonas aeruginosa: Surface interactions and antibacterial efficacy. Materials Today Communications, 40, Article 109785. https://doi.org/10.1016/j.mtcomm.2024.109785

The emergence of antimicrobial-resistant bacteria poses a significant health concern, stemming from chemically induced intrinsic and acquired-resistance responses in the microbe. Nanopatterns are an alternative bactericidal approach, employing physic... Read More about Mechano-bactericidal activity of two-photon polymerized micro-and nanoscale topographies against Pseudomonas aeruginosa: Surface interactions and antibacterial efficacy.

Controlling ZIF-67 film properties in water-based cathodic electrochemical deposition (2024)
Journal Article
Elsayed, E., Brevis, I., Pandiyan, S., Wildman, R., van der Zee, K. G., & Tokay, B. (2024). Controlling ZIF-67 film properties in water-based cathodic electrochemical deposition. Journal of Solid State Chemistry, 338, Article 124820. https://doi.org/10.1016/j.jssc.2024.124820

One of the main approaches to increase the surface area of a substrate is through depositing a film of a porous materials such as Zeolite imidazole framework (ZIF). ZIF films have shown surpassing capabilities because of their zeolite-like features,... Read More about Controlling ZIF-67 film properties in water-based cathodic electrochemical deposition.

Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient (2024)
Journal Article
Rivers, G., Lion, A., Putri, N. R. E., Rance, G. A., Moloney, C., Taresco, V., Crucitti, V. C., Constantin, H., Evangelista Barreiros, M. I., Cantu, L. R., Tuck, C. J., Rose, F. R., Hague, R. J., Roberts, C. J., Turyanska, L., Wildman, R. D., & He, Y. (2024). Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient. Materials Today Advances, 22, Article 100493. https://doi.org/10.1016/j.mtadv.2024.100493

Additive manufacturing offers manufacture of personalised pharmaceutical tablets through design freedoms and material deposition control at an individual voxel level. This control goes beyond geometry and materials choices: inkjet based 3D printing e... Read More about Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient.

Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient (2024)
Journal Article
Rivers, G., Lion, A., Rofiqoh Eviana Putri, N., Rance, G., Moloney, C., Taresco, V., Crucitti, V. C., Constantin, H., Inê Evangelista Barreiros, M., Cantu, L. R., Tuck, C., Rose, F. R. A. J., Hague, R. J. M., Roberts, C. J., Turyanska, L., Wildman, R. D., & He, Y. (2024). Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient. Materials Today Advances, 22, Article 100493. https://doi.org/10.1016/j.mtadv.2024.100493

Additive manufacturing offers manufacture of personalised pharmaceutical tablets through design freedoms and material deposition control at an individual voxel level. This control goes beyond geometry and materials choices: inkjet based 3D printing e... Read More about Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient.