Skip to main content

Research Repository

Advanced Search

Outputs (3)

Single-cell transcriptomics reveal how root tissues adapt to soil stress (2025)
Journal Article
Zhu, M., Hsu, C.-W., Peralta Ogorek, L. L., Taylor, I. W., La Cavera, S., Oliveira, D. M., Verma, L., Mehra, P., Mijar, M., Sadanandom, A., Perez-Cota, F., Boerjan, W., Nolan, T. M., Bennett, M. J., Benfey, P. N., & Pandey, B. K. (2025). Single-cell transcriptomics reveal how root tissues adapt to soil stress. Nature, https://doi.org/10.1038/s41586-025-08941-z

Land plants thrive in soils showing vastly different properties and environmental stresses1. Root systems can adapt to contrasting soil conditions and stresses, yet how their responses are programmed at the individual cell scale remains unclear. Usin... Read More about Single-cell transcriptomics reveal how root tissues adapt to soil stress.

Non-invasive hydrodynamic imaging in plant roots at cellular resolution (2021)
Journal Article
Pascut, F. C., Couvreur, V., Dietrich, D., Leftley, N., Reyt, G., Boursiac, Y., Calvo-Polanco, M., Casimiro, I., Maurel, C., Salt, D. E., Draye, X., Wells, D. M., Bennett, M. J., & Webb, K. F. (2021). Non-invasive hydrodynamic imaging in plant roots at cellular resolution. Nature Communications, 12, Article 4682. https://doi.org/10.1038/s41467-021-24913-z

A key impediment to studying water-related mechanisms in plants is the inability to non-invasively image water fluxes in cells at high temporal and spatial resolution. Here, we report that Raman microspectroscopy, complemented by hydrodynamic modelli... Read More about Non-invasive hydrodynamic imaging in plant roots at cellular resolution.

Anthropogenic environmental drivers of antimicrobial resistance in wildlife (2018)
Journal Article
Swift, B. M., Bennett, M., Waller, K., Dodd, C., Murray, A., Gomes, R. L., Humphreys, B., Hobman, J. L., Jones, M. A., Whitlock, S. E., Mitchell, L. J., Lennon, R. J., & Arnold, K. E. (2019). Anthropogenic environmental drivers of antimicrobial resistance in wildlife. Science of the Total Environment, 649, 12-20. https://doi.org/10.1016/j.scitotenv.2018.08.180

The isolation of antimicrobial resistant bacteria (ARB) from wildlife living adjacent to humans has led to the suggestion that such antimicrobial resistance (AMR) is anthropogenically driven by exposure to antimicrobials and ARB. However, ARB have al... Read More about Anthropogenic environmental drivers of antimicrobial resistance in wildlife.