Skip to main content

Research Repository

Advanced Search

Outputs (21)

OptoRheo: Simultaneous in situ micro-mechanical sensing and 3D imaging of live cell cultures (2023)
Preprint / Working Paper
Mendonca, T., Lis-Slimak, K., Matheson, A. B., Smith, M. G., Anane-Adjei, A. B., Cavanagh, R., Paterson, L., Dalgarno, P. A., Alexander, C., Tassieri, M., Merry, C. L. R., & Wright, A. J. OptoRheo: Simultaneous in situ micro-mechanical sensing and 3D imaging of live cell cultures

Biomechanical cues from the extracellular matrix (ECM) are essential for directing many cellular processes, from normal development and repair, to disease progression. To better understand cell-matrix interactions, we have developed a new instrument... Read More about OptoRheo: Simultaneous in situ micro-mechanical sensing and 3D imaging of live cell cultures.

C-terminal citrullinated peptide alters antigen-specific APC:T cell interactions leading to breach of immune tolerance (2023)
Journal Article
Malcolm, J., Nyirenda, M. H., Brown, J. L., Adrados-Planell, A., Campbell, L., Butcher, J. P., Glass, D. G., Piela, K., Goodyear, C. S., Wright, A. J., McInnes, I. B., Millington, O. R., & Culshaw, S. (2023). C-terminal citrullinated peptide alters antigen-specific APC:T cell interactions leading to breach of immune tolerance. Journal of Autoimmunity, 135, Article 102994. https://doi.org/10.1016/j.jaut.2023.102994

In rheumatoid arthritis, the emergence of anti-citrullinated autoimmunity is associated with HLA-antigen-T cell receptor complexes. The precise mechanisms underpinning this breach of tolerance are not well understood. Porphyromonas gingivalis express... Read More about C-terminal citrullinated peptide alters antigen-specific APC:T cell interactions leading to breach of immune tolerance.

Non-iterative aberration retrieval based on the spot shape around focus (2022)
Journal Article
Smid, P., See, C. W., Somekh, M. G., & Wright, A. J. (2022). Non-iterative aberration retrieval based on the spot shape around focus. Optics and Lasers in Engineering, 157, Article 107108. https://doi.org/10.1016/j.optlaseng.2022.107108

A non-iterative, robust, aberration retrieval method to determine primary aberrations by utilizing the intensity distribution at and around focus is presented. The primary Zernike aberrations (coma, spherical aberration and astigmatism) are retrieved... Read More about Non-iterative aberration retrieval based on the spot shape around focus.

Ultra-compact and ultra-broadband hybrid plasmonic-photonic vertical coupler with high coupling efficiency, directivity, and polarisation extinction ratio (2022)
Journal Article
Pezeshki, H., Wright, A. J., & Larkins, E. C. (2022). Ultra-compact and ultra-broadband hybrid plasmonic-photonic vertical coupler with high coupling efficiency, directivity, and polarisation extinction ratio. IET Optoelectronics, 16(3), 124-132. https://doi.org/10.1049/ote2.12063

An ultra-compact, ultra-broadband vertical coupler for dense photonic integrated circuits is reported with a 1.07×0.62μm2 wavelength-scale footprint. This hybrid plasmonic-photonic coupler uses a unique two-plane plasmonic nanoantenna array on a sili... Read More about Ultra-compact and ultra-broadband hybrid plasmonic-photonic vertical coupler with high coupling efficiency, directivity, and polarisation extinction ratio.

Microrheology With an Anisotropic Optical Trap (2021)
Journal Article
Gibson, G. M., Dalgarno, P. A., Wright, A., Paterson, L., Mendonca, T., Matheson, A. B., & Tassier, M. (2021). Microrheology With an Anisotropic Optical Trap. Frontiers in Physics, 9, Article 621512. https://doi.org/10.3389/fphy.2021.621512

Microrheology with optical tweezers (MOT) measurements are usually performed using optical traps that are close to isotropic across the plane being imaged, but little is known about what happens when this is not the case. In this work, we investigate... Read More about Microrheology With an Anisotropic Optical Trap.

Optical Tweezers with Integrated Multiplane Microscopy (OpTIMuM): a new tool for 3D microrheology (2021)
Journal Article
Matheson, A. B., Paterson, L., Wright, A. J., Mendonca, T., Tassieri, M., & Dalgarno, P. A. (2021). Optical Tweezers with Integrated Multiplane Microscopy (OpTIMuM): a new tool for 3D microrheology. Scientific Reports, 11, Article 5614. https://doi.org/10.1038/s41598-021-85013-y

We introduce a novel 3D microrheology system that combines for the first time Optical Tweezers with Integrated Multiplane Microscopy (OpTIMuM). The system allows the 3D tracking of an optically trapped bead, with ~ 20 nm accuracy along the optical ax... Read More about Optical Tweezers with Integrated Multiplane Microscopy (OpTIMuM): a new tool for 3D microrheology.

Microrheology reveals microscale viscosity gradients in planktonic systems (2020)
Journal Article
Guadayol, O., Mendonca, T., Segura-Noguera, M., Wright, A. J., Tassieri, M., & Humphries, S. (2021). Microrheology reveals microscale viscosity gradients in planktonic systems. Proceedings of the National Academy of Sciences, 118(1), Article e2011389118. https://doi.org/10.1073/pnas.2011389118

Microbial activity in planktonic systems creates a dynamic and heterogeneous microscale seascape that harbors a diverse community of microorganisms and ecological interactions of global significance. In recent decades great effort has been put into u... Read More about Microrheology reveals microscale viscosity gradients in planktonic systems.

Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells (2020)
Journal Article
Pérez-Cota, F., Fuentes-Domínguez, R., La Cavera III, S., Hardiman, W., Yao, M., Setchfield, K., Moradi, E., Naznin, S., Wright, A., Webb, K. F., Huett, A., Friel, C., Sottile, V., Elsheikha, H. M., Smith, R. J., & Clark, M. (2020). Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells. Journal of Applied Physics, 128(16), Article 160902. https://doi.org/10.1063/5.0023744

© 2020 Author(s). Characterization of the elasticity of biological cells is growing as a new way to gain insight into cell biology. Cell mechanics are related to most aspects of cellular behavior, and applications in research and medicine are broad.... Read More about Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells.

Microrheology reveals microscale viscosity gradients in planktonic systems (2020)
Preprint / Working Paper
Guadayol, Ò., Mendonca, T., Segura-Noguera, M., Wright, A. J., Tassieri, M., & Humphries, S. Microrheology reveals microscale viscosity gradients in planktonic systems

Microbial activity in planktonic systems creates a dynamic and heterogeneous microscale seascape that harbours a diverse community of microorganisms and ecological interactions of global significance. In recent decades a great effort has been put int... Read More about Microrheology reveals microscale viscosity gradients in planktonic systems.

Detection of a common odd aberration in confocal reflection microscopy by means of an edge scan (2019)
Journal Article
Smid, P., See, C., & Wright, A. (2019). Detection of a common odd aberration in confocal reflection microscopy by means of an edge scan. Journal of Optics, 21(12), Article 125601. https://doi.org/10.1088/2040-8986/ab4b33

In reflection laser scanning microscopes, detection of odd aberrations is challenging because aberration cancellation can occur after the second passage of the light beam through the system. A method is proposed that uses a sample containing high spa... Read More about Detection of a common odd aberration in confocal reflection microscopy by means of an edge scan.