Skip to main content

Research Repository

Advanced Search

Outputs (17)

SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice (2017)
Journal Article
Henry, S., Dievart, A., Divol, F., Pauluzzi, G., Meynard, D., Swarup, R., Wu, S., Gallagher, K., & Périn, C. (2017). SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice. Developmental Biology, 425(1), 1-7. https://doi.org/10.1016/j.ydbio.2017.03.001

The number of root cortex cell layers varies among plants, and many species have several cortical cell layers. We recently demonstrated that the two rice orthologs of the Arabidopsis SHR gene, OsSHR1 and OsSHR2, could complement the A. thaliana shr m... Read More about SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice.

One gene, many proteins: mapping cell-specific alternative splicing in plants (2016)
Journal Article
Swarup, R., Crespi, M., & Bennett, M. J. (2016). One gene, many proteins: mapping cell-specific alternative splicing in plants. Developmental Cell, 39(4), 383-385. https://doi.org/10.1016/j.devcel.2016.11.002

Pre-mRNA alternative splicing (AS) generates protein variants from a single gene that can create novel regulatory opportunities. In this issue of Developmental Cell, Li et al. (2016) present a high-resolution expression map of AS events in Arabidopsi... Read More about One gene, many proteins: mapping cell-specific alternative splicing in plants.

Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root (2016)
Journal Article
Street, I. H., Mathews, D. E., Yamburkenko, M. V., Sorooshzadeh, A., John, R. T., Swarup, R., Bennett, M. J., Kieber, J. J., & Schaller, G. E. (2016). Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root. Development, 143(21), 3982-3993. https://doi.org/10.1242/dev.132035

Hormonal interactions are critical for plant development. In Arabidopsis, cytokinins inhibit root growth through effects on cell proliferation and cell elongation. Here we define key mechanistic elements in a regulatory network by which cytokinin inh... Read More about Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root.

Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis (2016)
Journal Article
Porco, S., Pěnčík, A., Rashed, A., Voß, U., Casanova-Sáez, R., Bishopp, A., Golebiowska, A., Bhosale, R., Swarup, R., Swarup, K., Peňáková, P., Novak, O., Staswick, P., Hedden, P., Phillips, A. L., Vissenberg, C., Bennett, M. J., & Ljung, K. (2016). Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis. Proceedings of the National Academy of Sciences, 113(39), 11016-11021. https://doi.org/10.1073/pnas.1604375113

Auxin represents a key signal in plants, regulating almost every aspect of their growth and development. Major breakthroughs have been made dissecting the molecular basis of auxin transport, perception, and response. In contrast, how plants control t... Read More about Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis.

Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3 (2016)
Journal Article
Porco, S., Larrieu, A., Du, Y., Gaudinier, A., Goh, T., Swarup, K., Swarup, R., Kuempers, B., Bishopp, A., Lavenus, J., Casimiro, I., Hill, K., Benkova, E., Fukaki, H., Brady, S. M., Scheres, B., Peret, B., & Bennett, M. J. (2016). Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3. Development, 143(18), 3340-3349. https://doi.org/10.1242/dev.136283

Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-induc... Read More about Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3.

Plant embryogenesis requires AUX/LAX-mediated auxin influx (2015)
Journal Article
Robert, H. S., Grunewald, W., Sauer, M., Cannoot, B., Soriano, M., Swarup, R., Weijers, D., Bennett, M. J., Boutilier, K., & Friml, J. (2015). Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development, 142(4), 702-711. https://doi.org/10.1242/dev.115832

The plant hormone auxin and its directional transport are known to play a crucial role in defining the embryonic axis and subsequent development of the body plan. Although the role of PIN auxin efflux transporters has been clearly assigned during emb... Read More about Plant embryogenesis requires AUX/LAX-mediated auxin influx.

Systems Analysis of Auxin Transport in the Arabidopsis Root Apex (2014)
Journal Article
Band, L. R., Wells, D. M., Fozard, J. A., Ghetiu, T., French, A. P., Pound, M. P., Wilson, M. H., Yu, L., Li, W., Hijazi, H. I., Oh, J., Pearce, S. P., Perez-Amador, M. A., Yun, J., Kramer, E., Alonso, J. M., Godin, C., Vernoux, T., Hodgman, T. C., Pridmore, T. P., …Bennett, M. J. (2014). Systems Analysis of Auxin Transport in the Arabidopsis Root Apex. Plant Cell, 26(3), 862-875. https://doi.org/10.1105/tpc.113.119495

Auxin is a key regulator of plant growth and development. Within the root tip, auxin distribution plays a crucial role specifying developmental zones and coordinating tropic responses. Determining how the organ-scale auxin pattern is regulated at the... Read More about Systems Analysis of Auxin Transport in the Arabidopsis Root Apex.