Skip to main content

Research Repository

Advanced Search

Outputs (19)

The METTL3 RNA Methyltransferase Regulates Transcriptional Networks in Prostate Cancer (2022)
Journal Article
Haigh, D. B., Woodcock, C. L., Lothion-Roy, J., Harris, A. E., Metzler, V. M., Persson, J. L., …Mongan, N. P. (2022). The METTL3 RNA Methyltransferase Regulates Transcriptional Networks in Prostate Cancer. Cancers, 14(20), Article 5148. https://doi.org/10.3390/cancers14205148

Prostate cancer (PCa) is a leading cause of cancer-related deaths and is driven by aberrant androgen receptor (AR) signalling. For this reason, androgen deprivation therapies (ADTs) that suppress androgen-induced PCa progression either by preventing... Read More about The METTL3 RNA Methyltransferase Regulates Transcriptional Networks in Prostate Cancer.

Antimicrobial resistance in dairy slurry tanks: a critical point for measurement and control (2022)
Journal Article
Baker, M., Williams, A. D., Hooton, S. P., Helliwell, R., King, E., Dodsworth, T., María Baena-Nogueras, R., Warry, A., Ortori, C. A., Todman, H., Gray-Hammerton, C. J., C. W. Pritchard, A., Iles, E., Cook, R., Emes, R. D., Jones, M. A., Kypraios, T., West, H., Barrett, D. A., Ramsden, S. J., …Stekel, D. J. (2022). Antimicrobial resistance in dairy slurry tanks: a critical point for measurement and control. Environment International, 169, Article 107516. https://doi.org/10.1016/j.envint.2022.107516

Waste from dairy production is one of the largest sources of contamination from antimicrobial resistant bacteria (ARB) and genes (ARGs) in many parts of the world. However, studies to date do not provide necessary evidence to inform antimicrobial res... Read More about Antimicrobial resistance in dairy slurry tanks: a critical point for measurement and control.

Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat (2022)
Journal Article
Kareem, S. H., Hawkesford, M. J., DeSilva, J., Weerasinghe, M., Wells, D. M., Pound, M. P., …Foulkes, M. J. (2022). Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat. European Journal of Agronomy, 140, Article 126603. https://doi.org/10.1016/j.eja.2022.126603

Root system architecture (RSA) is important in optimizing the use of nitrogen. High-throughput phenotyping techniques may be used to study root system architecture traits under controlled environments. A root phenotyping platform, consisting of germi... Read More about Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat.

Transcriptional network underpinning ploidy-related elevated leaf potassium in neo-tetraploids (2022)
Journal Article
Fischer, S., Flis, P., Zhao, F. J., & Salt, D. E. (2022). Transcriptional network underpinning ploidy-related elevated leaf potassium in neo-tetraploids. Plant Physiology, 190(3), 1715-1730. https://doi.org/10.1093/plphys/kiac360

Whole-genome duplication generates a tetraploid from a diploid. Newly created tetraploids (neo-tetraploids) of Arabidopsis (Arabidopsis thaliana) have elevated leaf potassium (K), compared to their diploid progenitor. Micro-grafting has previously es... Read More about Transcriptional network underpinning ploidy-related elevated leaf potassium in neo-tetraploids.

Transcriptional networks underpinning ploidy related increased leaf potassium in neo-tetraploids (2022)
Journal Article
Fischer, S., Flis, P., Zhao, F.-J., & Salt, D. E. (in press). Transcriptional networks underpinning ploidy related increased leaf potassium in neo-tetraploids. Plant Physiology, 190(3), 1715-1730. https://doi.org/10.1093/plphys/kiac360

Whole-genome duplication generates a tetraploid from a diploid. Newly created tetraploids (neo-tetraploids) of Arabidopsis (Arabidopsis thaliana) have elevated leaf potassium (K), compared to their diploid progenitor. Micro-grafting has previously es... Read More about Transcriptional networks underpinning ploidy related increased leaf potassium in neo-tetraploids.

Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism (2022)
Journal Article
Fusi, R., Rosignoli, S., Lou, H., Sangiorgi, G., Bovina, R., Pattem, J. K., …Salvi, S. (2022). Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism. Proceedings of the National Academy of Sciences,

Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus anti-gravitropic offset (AGO) mechanisms. Here we report a new root angle regulatory gene termed ENHANCED GRA... Read More about Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism.

Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms (2022)
Journal Article
Huang, G., Kilic, A., Karady, M., Zhang, J., Mehra, P., Song, X., …Pandey, B. K. (2022). Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms. Proceedings of the National Academy of Sciences, 119(30), Article e2201072119. https://doi.org/10.1073/pnas.2201072119

Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene... Read More about Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms.

An oxygen-sensing mechanism for angiosperm adaptation to altitude (2022)
Journal Article
Abbas, M., Sharma, G., Dambire, C., Marquez, J., Alonso-Blanco, C., Proaño, K., & Holdsworth, M. J. (2022). An oxygen-sensing mechanism for angiosperm adaptation to altitude. Nature, https://doi.org/10.1038/s41586-022-04740-y

Flowering plants (angiosperms) can grow at extreme altitudes, and have been observed growing as high as 6,400 metres above sea level1,2; however, the molecular mechanisms that enable plant adaptation specifically to altitude are unknown. One distingu... Read More about An oxygen-sensing mechanism for angiosperm adaptation to altitude.

A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment (2022)
Journal Article
Tergemina, E., Elfarargi, A. F., Flis, P., Fulgione, A., Göktay, M., Neto, C., …Hancock, A. M. (2022). A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment. Science Advances, 8(20), Article eabm9385. https://doi.org/10.1126/sciadv.abm9385

Most well-characterized cases of adaptation involve single genetic loci. Theory suggests that multilocus adaptive walks should be common, but these are challenging to identify in natural populations. Here, we combine trait mapping with population gen... Read More about A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment.

Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis (2022)
Journal Article
De Pessemier, J., Moturu, T. R., Nacry, P., Ebert, R., De Gernier, H., Tillard, P., …Hermans, C. (2022). Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis. Journal of Experimental Botany, 73(11), 3569-3583

The role of root phenes in nitrogen (N) acquisition and biomass production was evaluated in 10 contrasting natural accessions of Arabidopsis thaliana L. Seedlings were grown on vertical agar plates with two different nitrate supplies. The low N treat... Read More about Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis.