Skip to main content

Research Repository

Advanced Search

Outputs (17)

Temporal refinement of 3D CNN semantic segmentations on 4D time-series of undersampled tomograms using hidden Markov models (2021)
Journal Article
Bellos, D., Basham, M., Pridmore, T., & French, A. P. (2021). Temporal refinement of 3D CNN semantic segmentations on 4D time-series of undersampled tomograms using hidden Markov models. Scientific Reports, 11(1), Article 23279. https://doi.org/10.1038/s41598-021-02466-x

Recently, several convolutional neural networks have been proposed not only for 2D images, but also for 3D and 4D volume segmentation. Nevertheless, due to the large data size of the latter, acquiring a sufficient amount of training annotations is mu... Read More about Temporal refinement of 3D CNN semantic segmentations on 4D time-series of undersampled tomograms using hidden Markov models.

Towards infield, live plant phenotyping using a reduced-parameter CNN (2019)
Journal Article
Atanbori, J., French, A. P., & Pridmore, T. P. (2020). Towards infield, live plant phenotyping using a reduced-parameter CNN. Machine Vision and Applications, 31, Article 2. https://doi.org/10.1007/s00138-019-01051-7

There is an increase in consumption of agricultural produce as a result of the rapidly growing human population, particularly in developing nations. This has triggered high-quality plant phenotyping re- search to help with the breeding of high yieldi... Read More about Towards infield, live plant phenotyping using a reduced-parameter CNN.

RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures (2019)
Journal Article
Yasrab, R., Atkinson, J. A., Wells, D. M., French, A. P., Pridmore, T. P., & Pound, M. P. (2019). RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures. GigaScience, 8(11), Article giz123. https://doi.org/10.1093/gigascience/giz123

BACKGROUND: In recent years quantitative analysis of root growth has become increasingly important as a way to explore the influence of abiotic stress such as high temperature and drought on a plant's ability to take up water and nutrients. Segmentat... Read More about RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures.

Cellular patterning of Arabidopsis roots under low phosphate conditions (2018)
Journal Article
Janes, G., von Wangenheim, D., Cowling, S., Kerr, I. D., Band, L. R., French, A. P., & Bishopp, A. (2018). Cellular patterning of Arabidopsis roots under low phosphate conditions. Frontiers in Plant Science, 9, Article 735. https://doi.org/10.3389/fpls.2018.00735

Phosphorus is a crucial macronutrient for plants playing a critical role in many cellular signaling and energy cycling processes. In light of this, phosphorus acquisition efficiency is an important target trait for crop improvement, but it also provi... Read More about Cellular patterning of Arabidopsis roots under low phosphate conditions.

Deep learning for multi-task plant phenotyping (2017)
Presentation / Conference Contribution
Pound, M. P., Atkinson, J. A., Wells, D. M., Pridmore, T. P., & French, A. P. Deep learning for multi-task plant phenotyping. Presented at ICCV 2017 International Conference on Computer Vision, Venice, Italy

Plant phenotyping has continued to pose a challenge to computer vision for many years. There is a particular demand to accurately quantify images of crops, and the natural variability and structure of these plants presents unique difficulties. Recent... Read More about Deep learning for multi-task plant phenotyping.

Deep Learning for Multi-task Plant Phenotyping (2017)
Preprint / Working Paper
Pound, M. P., Atkinson, J. A., Wells, D. M., Pridmore, T. P., & French, A. P. (2017). Deep Learning for Multi-task Plant Phenotyping

Plant phenotyping has continued to pose a challenge to computer vision for many years. There is a particular demand to accurately quantify images of crops, and the natural variability and structure of these plants presents unique difficulties. Recent... Read More about Deep Learning for Multi-task Plant Phenotyping.

Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress (2017)
Journal Article
Lowe, A., Harrison, N., & French, A. P. (2017). Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods, 13, Article 80. https://doi.org/10.1186/s13007-017-0233-z

This review explores how imaging techniques are being developed with a focus on deployment for crop monitoring methods. Imaging applications are discussed in relation to both field and glasshouse-based plants, and techniques are sectioned into ‘healt... Read More about Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress.

AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping (2017)
Journal Article
Pound, M. P., Fozard, S., Torres Torres, M., Forde, B. G., & French, A. P. (2017). AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping. Plant Methods, 13(1), Article 12. https://doi.org/10.1186/s13007-017-0161-y

Background: Computer-based phenotyping of plants has risen in importance in recent years. Whilst much software has been written to aid phenotyping using image analysis, to date the vast majority has been only semi-automatic. However, such interaction... Read More about AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping.

Approaches to three-dimensional reconstruction of plant shoot topology and geometry (2016)
Journal Article
Gibbs, J., Pound, M. P., French, A. P., Wells, D. M., Murchie, E. H., & Pridmore, T. P. (2016). Approaches to three-dimensional reconstruction of plant shoot topology and geometry. Functional Plant Biology, 44(1), 62-75. https://doi.org/10.1071/FP16167

There are currently 805 million people classified as chronically undernourished, and yet the World’s population is still increasing. At the same time, global warming is causing more frequent and severe flooding and drought, thus destroying crops and... Read More about Approaches to three-dimensional reconstruction of plant shoot topology and geometry.

Deep Machine Learning provides state-of-the-art performance in image-based plant phenotyping (2016)
Preprint / Working Paper
Pound, M. P., Burgess, A. J., Wilson, M. H., Atkinson, J. A., Griffiths, M., Jackson, A. S., Bulat, A., Tzimiropoulos, G., Wells, D. M., Murchie, E. H., Pridmore, T. P., & French, A. P. Deep Machine Learning provides state-of-the-art performance in image-based plant phenotyping

Deep learning is an emerging field that promises unparalleled results on many data analysis problems. We show the success offered by such techniques when applied to the challenging problem of image-based plant phenotyping, and demonstrate state-of-th... Read More about Deep Machine Learning provides state-of-the-art performance in image-based plant phenotyping.