Skip to main content

Research Repository

Advanced Search

Outputs (2140)

Preparation and characterization of various PVPylated divalent metal-doped ferrite nanoparticles for magnetic hyperthermia (2024)
Journal Article
El-Boubbou, K., Lemine, O. M., Algessair, S., Madkhali, N., Al-Najar, B., AlMatri, E., …Henini, M. (2024). Preparation and characterization of various PVPylated divalent metal-doped ferrite nanoparticles for magnetic hyperthermia. RSC Advances, 14(22), 15664-15679. https://doi.org/10.1039/d4ra01600a

There is an incessant demand to keep improving on the heating responses of polymeric magnetic nanoparticles (MNPs) under magnetic excitation, particularly in the pursuit for them to be utilized for clinical hyperthermia applications. Herein, we repor... Read More about Preparation and characterization of various PVPylated divalent metal-doped ferrite nanoparticles for magnetic hyperthermia.

Diagnostic accuracy of autofluorescence-Raman microspectroscopy for surgical margin assessment during Mohs micrographic surgery of basal cell carcinoma (2024)
Journal Article
Boitor, R. A., Varma, S., Sharma, A., Odedra, S., Elsheikh, S., Eldib, K., …Notingher, I. (2024). Diagnostic accuracy of autofluorescence-Raman microspectroscopy for surgical margin assessment during Mohs micrographic surgery of basal cell carcinoma. British Journal of Dermatology, Article ljae196. https://doi.org/10.1093/bjd/ljae196

Background Autofluorescence (AF)–Raman microspectroscopy is a technology that can detect residual basal cell carcinoma (BCC) on the resection margin of fresh, surgically excised tissue specimens. The technology does not require tissue fixation, st... Read More about Diagnostic accuracy of autofluorescence-Raman microspectroscopy for surgical margin assessment during Mohs micrographic surgery of basal cell carcinoma.

Fast and High‐Resolution T2 Mapping Based on Echo Merging Plus k‐t Undersampling with Reduced Refocusing Flip Angles (TEMPURA) as Methods for Human Renal MRI (2024)
Journal Article
Li, H., Priest, A. N., Horvat‐Menih, I., Huang, Y., Li, S., Stewart, G. D., …Gallagher, F. A. (2024). Fast and High‐Resolution T2 Mapping Based on Echo Merging Plus k‐t Undersampling with Reduced Refocusing Flip Angles (TEMPURA) as Methods for Human Renal MRI. Magnetic Resonance in Medicine, 92(3), 1138-1148. https://doi.org/10.1002/mrm.30115

Purpose: To develop a highly accelerated multi‐echo spin‐echo method, TEMPURA, for reducing the acquisition time and/or increasing spatial resolution for kidney T2 mapping. Methods: TEMPURA merges several adjacent echoes into one k‐space by either co... Read More about Fast and High‐Resolution T2 Mapping Based on Echo Merging Plus k‐t Undersampling with Reduced Refocusing Flip Angles (TEMPURA) as Methods for Human Renal MRI.

Post‐task responses following working memory and movement are driven by transient spectral bursts with similar characteristics (2024)
Journal Article
Coleman, S. C., Seedat, Z. A., Pakenham, D. O., Quinn, A. J., Brookes, M. J., Woolrich, M. W., & Mullinger, K. J. (2024). Post‐task responses following working memory and movement are driven by transient spectral bursts with similar characteristics. Human Brain Mapping, 45(7), Article e26700. https://doi.org/10.1002/hbm.26700

The post-movement beta rebound has been studied extensively using magnetoencephalography (MEG) and is reliably modulated by various task parameters as well as illness. Our recent study showed that rebounds, which we generalise as “post-task responses... Read More about Post‐task responses following working memory and movement are driven by transient spectral bursts with similar characteristics.

Shadows and properties of spin-induced scalarized black holes with and without a Ricci coupling (2024)
Journal Article
Fernandes, P. G., Burrage, C., Eichhorn, A., & Sotiriou, T. P. (2024). Shadows and properties of spin-induced scalarized black holes with and without a Ricci coupling. Physical Review D, 109(10), Article 104033. https://doi.org/10.1103/physrevd.109.104033

In this work, we explore the properties and shadows of spin-induced scalarized black holes, as well as investigate how a Ricci coupling influences them. Our findings reveal significant deviations from the Kerr metric in terms of the location and geod... Read More about Shadows and properties of spin-induced scalarized black holes with and without a Ricci coupling.

Quantum thermodynamics of boundary time-crystals (2024)
Journal Article
Carollo, F., Lesanovsky, I., Antezza, M., & De Chiara, G. (2024). Quantum thermodynamics of boundary time-crystals. Quantum Science and Technology, 9(3), Article 035024. https://doi.org/10.1088/2058-9565/ad3f42

Time-translation symmetry breaking is a mechanism for the emergence of non-stationary many-body phases, so-called time-crystals, in Markovian open quantum systems. Dynamical aspects of time-crystals have been extensively explored over the recent year... Read More about Quantum thermodynamics of boundary time-crystals.

Benchmarking discrete truncated Wigner approximation and neural network quantum states with the exact dynamics in a Rydberg atomic chain (2024)
Journal Article
Naik, V., Shenoy, V., Li, W., & Nath, R. (2024). Benchmarking discrete truncated Wigner approximation and neural network quantum states with the exact dynamics in a Rydberg atomic chain. Physica Scripta, 99(6), Article 065925. https://doi.org/10.1088/1402-4896/ad3d9d

We benchmark the discrete truncated Wigner approximation (DTWA) and Neural quantum states (NQS) based on restricted Boltzmann-like machines with the exact excitation and correlation dynamics in a chain of ten Rydberg atoms. The initial state is where... Read More about Benchmarking discrete truncated Wigner approximation and neural network quantum states with the exact dynamics in a Rydberg atomic chain.

Primordial black holes as a dark matter candidate - a brief overview (2024)
Journal Article
Green, A. M. (2024). Primordial black holes as a dark matter candidate - a brief overview. Nuclear Physics B, 1003, Article 116494. https://doi.org/10.1016/j.nuclphysb.2024.116494

Historically the most popular dark matter candidates have been new elementary particles, such as Weakly Interacting Massive Particles and axions. However Primordial Black Holes (PBHs), black holes formed from overdensities in the early Universe, are... Read More about Primordial black holes as a dark matter candidate - a brief overview.