Skip to main content

Research Repository

Advanced Search

Outputs (6)

Resolving artefacts in voltage-clamp experiments with computational modelling: an application to fast sodium current recordings. (2024)
Preprint / Working Paper
Lei, C. L., Clark, A. P., Clerx, M., Wei, S., Bloothooft, M., de Boer, T. P., Christini, D. J., Krogh-Madsen, T., & Mirams, G. R. Resolving artefacts in voltage-clamp experiments with computational modelling: an application to fast sodium current recordings

Cellular electrophysiology is the foundation of many fields, from basic science in neurology, cardiology, oncology to safety critical applications for drug safety testing, clinical phenotyping, etc. Patch-clamp voltage clamp is the gold standard tech... Read More about Resolving artefacts in voltage-clamp experiments with computational modelling: an application to fast sodium current recordings..

Optimal experimental designs for characterising ion channel gating by filling the phase-voltage space of model dynamics (2024)
Journal Article
Mirams, G. R., Clerx, M., Whittaker, D. G., & Lei, C. L. (2024). Optimal experimental designs for characterising ion channel gating by filling the phase-voltage space of model dynamics. Mathematics in Medical and Life Sciences, 2024(1), Article 2375494. https://doi.org/10.1080/29937574.2024.2375494

Voltage-clamp waveforms are imposed in the patch-clamp electrophysiology technique to provoke ion currents, the particular waveform that is used is known as the “voltage-clamp protocol”. Designing protocols to probe and quantify how gating for a part... Read More about Optimal experimental designs for characterising ion channel gating by filling the phase-voltage space of model dynamics.

Optimal experimental designs for characterising ion channel gating by filling the phase-voltage space of model dynamics (2024)
Journal Article
Mirams, G. R., Clerx, M., Whittaker, D. G., & Lei, C. L. (2024). Optimal experimental designs for characterising ion channel gating by filling the phase-voltage space of model dynamics. Mathematics in Medical and Life Sciences, 1(1), Article 2375494. https://doi.org/10.1080/29937574.2024.2375494

Voltage-clamp waveforms are imposed in the patch-clamp electrophysiology technique to provoke ion currents, the particular waveform that is used is known as the “voltage-clamp protocol”. Designing protocols to probe and quantify how gating for a part... Read More about Optimal experimental designs for characterising ion channel gating by filling the phase-voltage space of model dynamics.

An experimental investigation of rundown of the L-type calcium current [version 1; peer review: awaiting peer review] (2024)
Journal Article
Agrawal, A., Clerx, M., Wang, K., Gissinger, E., Gavaghan, D. J., Polonchuk, L., & Mirams, G. R. (in press). An experimental investigation of rundown of the L-type calcium current [version 1; peer review: awaiting peer review]. Wellcome Open Research, 9, 250. https://doi.org/10.12688/wellcomeopenres.20374.1

Background

L-type calcium channels (LCCs) are multi-protein macro-molecular ion channel complexes that are involved in several critical functions in cardiac, skeletal, neuronal, smooth muscle, and endocrine cells. Like other ion channels, LCCs can... Read More about An experimental investigation of rundown of the L-type calcium current [version 1; peer review: awaiting peer review].

Variability in reported midpoints of (in)activation of cardiac INa (2024)
Preprint / Working Paper
Clerx, M., Volders, P. G., & Mirams, G. R. Variability in reported midpoints of (in)activation of cardiac INa

Electrically active cells like cardiomyocytes show variability in their size, shape, and electrical activity. But should we expect variability in the properties of their ionic currents? In this brief review we gather and visualise measurements of two... Read More about Variability in reported midpoints of (in)activation of cardiac INa.