Skip to main content

Research Repository

Advanced Search

Outputs (3)

Fuzzy Uncertainty-Based Out-of-Distribution Detection Algorithm for Semantic Segmentation (2023)
Presentation / Conference Contribution
Lin, Q., Chen, X., Chen, C., Pekaslan, D., & Garibaldi, J. M. (2023, August). Fuzzy Uncertainty-Based Out-of-Distribution Detection Algorithm for Semantic Segmentation. Presented at 2023 IEEE International Conference on Fuzzy Systems (FUZZ), Songdo Incheon, Korea

Deep learning models have achieved high performance in numerous semantic segmentation tasks. However, when the input data at test time do not resemble the training data, deep learning models can not handle them properly and will probably produce poor... Read More about Fuzzy Uncertainty-Based Out-of-Distribution Detection Algorithm for Semantic Segmentation.

The Design and Implementation of a Constrained Interval Type-2 Fuzzy System for Credit Card Fraud Detection (2023)
Presentation / Conference Contribution
Wang, X., Li, M., Chen, C., & Garibaldi, J. M. (2023, August). The Design and Implementation of a Constrained Interval Type-2 Fuzzy System for Credit Card Fraud Detection. Presented at 2023 IEEE International Conference on Fuzzy Systems (FUZZ), Songdo Incheon, Korea

Fuzzy systems with type-1, interval type-2 and general type-2 fuzzy sets have been widely applied in various fields. Constrained Interval Type-2 (CIT2) fuzzy sets and systems are an approach designed to improve the interpretability of type-2 fuzzy in... Read More about The Design and Implementation of a Constrained Interval Type-2 Fuzzy System for Credit Card Fraud Detection.

Towards Causal Fuzzy System Rules Using Causal Direction (2023)
Presentation / Conference Contribution
Zhang, T., Ying, J., Wagner, C., & Garibaldi, J. (2023, August). Towards Causal Fuzzy System Rules Using Causal Direction. Presented at 2023 IEEE International Conference on Fuzzy Systems (FUZZ), Incheon, Korea

Generating (fuzzy) rule bases from data can provide a rapid pathway to constructing (fuzzy) systems. However, direct rule generation approaches tend to generate very large numbers of rules. One reason for this is that such techniques are not designed... Read More about Towards Causal Fuzzy System Rules Using Causal Direction.