Skip to main content

Research Repository

Advanced Search

Outputs (1566)

Four-Body Nonadditive Potential Energy Surface and the Fourth Virial Coefficient of Helium (2023)
Journal Article
Wheatley, R. J., Garberoglio, G., & Harvey, A. H. (2023). Four-Body Nonadditive Potential Energy Surface and the Fourth Virial Coefficient of Helium. Journal of Chemical and Engineering Data, 68(12), 3257-3264. https://doi.org/10.1021/acs.jced.3c00578

The four-body nonadditive contribution to the energy of four helium atoms is calculated and fitted for all geometries for which the internuclear distances exceed a small minimum value. The interpolation uses an active learning approach based on Gauss... Read More about Four-Body Nonadditive Potential Energy Surface and the Fourth Virial Coefficient of Helium.

Bi2Se3 interlayer treatments affecting the Y3Fe5O12 (YIG) platinum spin Seebeck effect (2023)
Journal Article
Hu, Y., Weir, M. P., Pereira, H. J., Amin, O. J., Pitcairn, J., Cliffe, M. J., Rushforth, A. W., Kunakova, G., Niherysh, K., Korolkov, V., Kertfoot, J., Makarovsky, O., & Woodward, S. (2023). Bi2Se3 interlayer treatments affecting the Y3Fe5O12 (YIG) platinum spin Seebeck effect. Applied Physics Letters, 123(22), Article 223902. https://doi.org/10.1063/5.0157778

In this work, we present a method to enhance the longitudinal spin Seebeck effect at platinum/yttrium iron garnet (Pt/YIG) interfaces. The introduction of a partial interlayer of bismuth selenide (Bi2Se3, 2.5% surface coverage) interfaces significant... Read More about Bi2Se3 interlayer treatments affecting the Y3Fe5O12 (YIG) platinum spin Seebeck effect.

Electrocatalytic CO2 reduction to C2H4: From lab to fab (2023)
Journal Article
Guo, Z., Yang, F., Li, X., Zhu, H., Do, H., Loon Fow, K., Hirst, J. D., Wu, T., Ye, Q., Peng, Y., Bin Wu, H., Wu, A., & Xu, M. (2024). Electrocatalytic CO2 reduction to C2H4: From lab to fab. Journal of Energy Chemistry, 90, 540-564. https://doi.org/10.1016/j.jechem.2023.11.019

The global concerns of energy crisis and climate change, primarily caused by carbon dioxide (CO2), are of utmost importance. Recently, the electrocatalytic CO2 reduction reaction (CO2RR) to high value-added multi-carbon (C2+) products driven by renew... Read More about Electrocatalytic CO2 reduction to C2H4: From lab to fab.

Theoretical analysis of divalent cation effects on aptamer recognition of neurotransmitter targets (2023)
Journal Article
Douaki, A., Stuber, A., Hengsteler, J., Momotenko, D., Rogers, D. M., Rocchia, W., Hirst, J. D., Nakatsuka, N., & Garoli, D. (2023). Theoretical analysis of divalent cation effects on aptamer recognition of neurotransmitter targets. Chemical Communications, 59(99), 14713-14716. https://doi.org/10.1039/d3cc04334g

Aptamer-based sensing of small molecules such as dopamine and serotonin in the brain, requires characterization of the specific aptamer sequences in solutions mimicking the in vivo environment with physiological ionic concentrations. In particular, d... Read More about Theoretical analysis of divalent cation effects on aptamer recognition of neurotransmitter targets.

Synthesis of core-shell polymer particles in supercritical carbon dioxide via iterative monomer addition (2023)
Journal Article
Kortsen, K., Reynolds-Green, M., Hopkins, B., McLellan, A., Derry, M. J., Topham, P. D., Titman, J. J., Keddie, D. J., Taresco, V., & Howdle, S. M. (2023). Synthesis of core-shell polymer particles in supercritical carbon dioxide via iterative monomer addition. Chemical Communications, 59(98), 14536-14539. https://doi.org/10.1039/d3cc04969h

A new, robust methodology for the synthesis of polystyrene-poly(methyl methacrylate) (PS-PMMA) core-shell particles using seeded dispersion polymerisation in supercritical carbon dioxide is reported, where the core-shell ratio can be controlled predi... Read More about Synthesis of core-shell polymer particles in supercritical carbon dioxide via iterative monomer addition.

Analysis of the volatile monoterpene composition of citrus essential oils by photoelectron spectroscopy employing continuously monitored dynamic headspace sampling (2023)
Journal Article
Ganjitabar, H., Hadidi, R., Garcia, G. A., Nahon, L., & Powis, I. (2023). Analysis of the volatile monoterpene composition of citrus essential oils by photoelectron spectroscopy employing continuously monitored dynamic headspace sampling. Analyst, 148(24), 6228–6240. https://doi.org/10.1039/d3an01448g

A new photoelectron spectroscopic method permitting a quantitative analysis of the volatile headspace of several essential oils is presented and discussed. In particular, we focus on the monoterpene compounds, which are known to be the dominant volat... Read More about Analysis of the volatile monoterpene composition of citrus essential oils by photoelectron spectroscopy employing continuously monitored dynamic headspace sampling.

Can “Electric Flare Stacks” Reduce CO2 Emissions? A Case Study with Nonthermal Plasma (2023)
Journal Article
Molteni, M., Walker, G., Parmar, D., Sutton, M., Licence, P., & Woodward, S. (2023). Can “Electric Flare Stacks” Reduce CO2 Emissions? A Case Study with Nonthermal Plasma. Industrial & Engineering Chemistry Research, 62(46), 19649-19657. https://doi.org/10.1021/acs.iecr.3c02909

Gas flare stacks are the current benchmark technology for industrial pollution control. However, their impact on human health and the environment is not negligible. If net zero CO2 emissions are to be achieved, their current significant CO2 impact (4... Read More about Can “Electric Flare Stacks” Reduce CO2 Emissions? A Case Study with Nonthermal Plasma.

Electronic Structure and d–d Spectrum of Metal–Organic Frameworks with Transition-Metal Ions (2023)
Journal Article
Popov, I., Raenko, D., Tchougréeff, A., & Besley, E. (2023). Electronic Structure and d–d Spectrum of Metal–Organic Frameworks with Transition-Metal Ions. Journal of Physical Chemistry C, 127(44), 21749–21757. https://doi.org/10.1021/acs.jpcc.3c05025

The electronic structure of metal–organic frameworks (MOFs) containing transition metal (TM) ions represents a significant and largely unresolved computational challenge due to limited solutions to the quantitative description of low-energy excitatio... Read More about Electronic Structure and d–d Spectrum of Metal–Organic Frameworks with Transition-Metal Ions.

A dirigent protein complex directs lignin polymerization and assembly of the root diffusion barrier (2023)
Journal Article
Gao, Y.-Q., Huang, J.-Q., Reyt, G., Song, T., Love, A., Tiemessen, D., Xue, P.-Y., Wu, W.-K., George, M. W., Chen, X.-Y., Chao, D.-Y., Castrillo, G., & Salt, D. E. (2023). A dirigent protein complex directs lignin polymerization and assembly of the root diffusion barrier. Science, 382(6669), 464-471. https://doi.org/10.1126/science.adi5032

Functionally similar to the tight junctions present in animal guts, plant roots have evolved a lignified Casparian strip as an extracellular diffusion barrier in the endodermis to seal the root apoplast and maintain nutrient homeostasis. How this dif... Read More about A dirigent protein complex directs lignin polymerization and assembly of the root diffusion barrier.