Skip to main content

Research Repository

Advanced Search

Outputs (26)

Simultaneous geraniol and citronellol transesterification using Pseudomonas fluorescens lipase for the production of fragrance and flavour esters: a kinetic study (2024)
Journal Article
Wikaputri, A. S., Irvine, D. J., Stockman, R. A., & Shivaprasad, P. (2024). Simultaneous geraniol and citronellol transesterification using Pseudomonas fluorescens lipase for the production of fragrance and flavour esters: a kinetic study. Journal of Agriculture and Food Research, 16, Article 101186. https://doi.org/10.1016/j.jafr.2024.101186

This study aims to develop, for the very first time, a kinetic model for the simultaneous transesterification of geraniol and citronellol using Pseudomonas fluorescens lipase to produce their respective esters. This allows us to test the feasibility... Read More about Simultaneous geraniol and citronellol transesterification using Pseudomonas fluorescens lipase for the production of fragrance and flavour esters: a kinetic study.

Oxidation of Monoterpenes to Form Diols and Triols: A Versatile Toolbox for Polymer Synthesis (2023)
Journal Article
Fowler, H. R., O'Brien, D. M., Keddie, D. J., Alexander, C., Irvine, D. J., Stockman, R. A., Howdle, S. M., & Taresco, V. (2023). Oxidation of Monoterpenes to Form Diols and Triols: A Versatile Toolbox for Polymer Synthesis. Macromolecular Chemistry and Physics, 224(8), Article 2200446. https://doi.org/10.1002/macp.202200446

Polyols and polyacrylates have a wide range of applications in polymer synthesis as monomers, initiators, or building blocks in a variety of polymerization reaction types. With an ever-growing need to reduce the global dependency on fossil fuels, fin... Read More about Oxidation of Monoterpenes to Form Diols and Triols: A Versatile Toolbox for Polymer Synthesis.

Predictive Molecular Design and Structure–Property Validation of Novel Terpene-Based, Sustainably Sourced Bacterial Biofilm-Resistant Materials (2023)
Journal Article
Cuzzucoli Crucitti, V., Ilchev, A., Moore, J. C., Fowler, H. R., Dubern, J.-F., Sanni, O., Xue, X., Husband, B. K., Dundas, A. A., Smith, S., Wildman, J. L., Taresco, V., Williams, P., Alexander, M. R., Howdle, S. M., Wildman, R. D., Stockman, R. A., & Irvine, D. J. (2023). Predictive Molecular Design and Structure–Property Validation of Novel Terpene-Based, Sustainably Sourced Bacterial Biofilm-Resistant Materials. Biomacromolecules, https://doi.org/10.1021/acs.biomac.2c00721

Presented in this work is the use of a molecular descriptor, termed the α parameter, to aid in the design of a series of novel, terpene-based, and sustainable polymers that were resistant to biofilm formation by the model bacterial pathogen Pseudomon... Read More about Predictive Molecular Design and Structure–Property Validation of Novel Terpene-Based, Sustainably Sourced Bacterial Biofilm-Resistant Materials.

Sustainable ABA triblock methacrylate copolymers incorporating both high and low Tg terpene-derived monomers (2022)
Journal Article
Atkinson, R. L., Elsmore, M., Smith, S., Reynolds-Green, M., Topham, P. D., Toolan, D. T., Derry, M. J., Monaghan, O., Taresco, V., Irvine, D. J., Stockman, R. A., De Focatiis, D. S., & Howdle, S. M. (2022). Sustainable ABA triblock methacrylate copolymers incorporating both high and low Tg terpene-derived monomers. European Polymer Journal, 179, Article 11567. https://doi.org/10.1016/j.eurpolymj.2022.111567

We report the synthesis of novel terpene-based monomers: nopinyl acrylate and methacrylate, from naturally abundant β-pinene. A very high Tg value was observed for poly(nopinyl methacrylate) when synthesised by free radical polymerisation, and well-d... Read More about Sustainable ABA triblock methacrylate copolymers incorporating both high and low Tg terpene-derived monomers.

A self-crosslinking monomer, α-pinene methacrylate: understanding and exploiting hydrogen abstraction (2022)
Journal Article
Monaghan, O. R., Skowron, S. T., Moore, J. C., Pin-Nó, M., Kortsen, K., Atkinson, R. L., Krumins, E., Lentz, J. C., Machado, F., Onat, Z., Brookfield, A., Collison, D., Khlobystov, A. N., De Focatiis, D., Irvine, D. J., Taresco, V., Stockman, R. A., & Howdle, S. M. (2022). A self-crosslinking monomer, α-pinene methacrylate: understanding and exploiting hydrogen abstraction. Polymer Chemistry, 13(39), 5557-5567. https://doi.org/10.1039/d2py00878e

Crosslinking is a valuable route to creating new polymeric materials and normally involves introduction of a cross linker or some form of secondary processing. Here we report the discovery and analysis of a self-crosslinking sustainable terpene deriv... Read More about A self-crosslinking monomer, α-pinene methacrylate: understanding and exploiting hydrogen abstraction.

Sustainable terpene triblock copolymers with tuneable properties for pressure sensitive adhesive applications (2022)
Journal Article
Elsmore, M., Atkinson, R., Irvine, D., Howdle, S., & De Focatiis, D. (2022). Sustainable terpene triblock copolymers with tuneable properties for pressure sensitive adhesive applications. Polymer Testing, 109, Article 107530. https://doi.org/10.1016/j.polymertesting.2022.107530

A series of triblock copolymers in a hard-soft-hard block configuration with varying hard block α-pinene methacrylate content and molecular weight and butyl acrylate soft segment have been synthesised and investigated for viability in pressure sensit... Read More about Sustainable terpene triblock copolymers with tuneable properties for pressure sensitive adhesive applications.

Correction to “Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers” (2022)
Journal Article
Ruiz-Cantu, L., Trindade, G. F., Taresco, V., Zhou, Z., He, Y., Burroughs, L., Clark, E. A., Rose, F. R. A. J., Tuck, C., Hague, R., Roberts, C. J., Alexander, M., Irvine, D. J., & Wildman, R. D. (2022). Correction to “Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers”. ACS Applied Materials and Interfaces, 14(6), 8654. https://doi.org/10.1021/acsami.2c00035

The chemical structure of the drug trandolapril has been corrected in Figure 4c. The conclusions of the work have not been affected by this correction. (Figure present).

The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing (2021)
Journal Article
Hu, Q., Rance, G. A., Trindade, G. F., Pervan, D., Jiang, L., Foerster, A., Turyanska, L., Tuck, C., Irvine, D. J., Hague, R., & Wildman, R. D. (2022). The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing. Additive Manufacturing, 51, Article 102575. https://doi.org/10.1016/j.addma.2021.102575

Two-photon polymerisation (2PP) based additive manufacturing has emerged as a powerful technology to fabricate complex three-dimensional micro- and nanoscale architectures. However, a comprehensive understanding of the effect of printing parameters o... Read More about The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing.

Generation and Characterization of a Library of Novel Biologically Active Functional Surfactants (Surfmers) Using Combined High-Throughput Methods (2021)
Journal Article
Cuzzucoli Crucitti, V., Contreas, L., Taresco, V., Howard, S. C., Dundas, A. A., Limo, M. J., Nisisako, T., Williams, P. M., Williams, P., Alexander, M. R., Wildman, R. D., Muir, B. W., & Irvine, D. J. (2021). Generation and Characterization of a Library of Novel Biologically Active Functional Surfactants (Surfmers) Using Combined High-Throughput Methods. ACS Applied Materials and Interfaces, 13(36), 43290-43300. https://doi.org/10.1021/acsami.1c08662

We report the first successful combination of three distinct high-throughput techniques to deliver the accelerated design, synthesis, and property screening of a library of novel, bio-instructive, polymeric, comb-graft surfactants. These three-dimens... Read More about Generation and Characterization of a Library of Novel Biologically Active Functional Surfactants (Surfmers) Using Combined High-Throughput Methods.

Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers (2021)
Journal Article
Ruiz-Cantu, L., Trindade, G. F., Taresco, V., Zhou, Z., He, Y., Burroughs, L., Clark, E. A., Rose, F. R., Tuck, C., Hague, R., Roberts, C. J., Alexander, M., Irvine, D. J., & Wildman, R. D. (2021). Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers. ACS Applied Materials and Interfaces, 13(33), 38969-38978. https://doi.org/10.1021/acsami.1c07850

Controlling the microstructure of materials by means of phase separation is a versatile tool for optimizing material properties. Phase separation has been exploited to fabricate intricate microstructures in many fields including cell biology, tissue... Read More about Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers.