Skip to main content

Research Repository

Advanced Search

Outputs (56)

Organofunctionalized borotungstate polyoxometalates as tunable photocatalysts for oxidative dimerization of amines (2024)
Journal Article
Tsang, N., Kibler, A. J., Argent, S. P., Lam, H. W., Jones, K. D., & Newton, G. N. (2024). Organofunctionalized borotungstate polyoxometalates as tunable photocatalysts for oxidative dimerization of amines. Chemical Science, 15(36), 14685-14691. https://doi.org/10.1039/d4sc03534h

Organofunctionalized borotungstate Keggin polyoxometalates, (nBu4N)3H[HBW11O39(P(O)Ph)2] (PBW11), (nBu4N)3H[HBW11O39(As(O)Ph)2] (AsBW11), and (nBu4N)4[HBW11O39(PhSiOSiPh)] (SiBW11), were synthesized and structurally characterized. Cyclic voltammetry... Read More about Organofunctionalized borotungstate polyoxometalates as tunable photocatalysts for oxidative dimerization of amines.

Room temperature compressed air-stable conductive copper films for flexible electronics (2024)
Journal Article
Pereira, H. J., Makarovsky, O., Amabilino, D. B., & Newton, G. N. (2024). Room temperature compressed air-stable conductive copper films for flexible electronics. npj Flexible Electronics, 8, Article 44. https://doi.org/10.1038/s41528-024-00331-1

The state-of-the-art technology of fabricating printed copper electronics is focussed largely on thermal sintering restricting transition towards heat sensitive flexible substrates. Herein we report a pioneering technology which eliminates the need f... Read More about Room temperature compressed air-stable conductive copper films for flexible electronics.

Structure and chemical composition of the Mg electrode during cycling in a simple glyme electrolyte (2024)
Journal Article
Dimogiannis, K., Sankowski, A., Holc, C., Parmenter, C. D., Newton, G. N., Walsh, D. A., 
Johnson, L. R. (2024). Structure and chemical composition of the Mg electrode during cycling in a simple glyme electrolyte. Energy Storage Materials, 67, Article 103280. https://doi.org/10.1016/j.ensm.2024.103280

The volumetric energy density of magnesium exceeds that of lithium, making magnesium batteries particularly promising for next-generation energy storage. However, electrochemical cycling of magnesium electrodes in common battery electrolytes is coulo... Read More about Structure and chemical composition of the Mg electrode during cycling in a simple glyme electrolyte.

Four Redox Isomers of a [3 × 3] Copper–Iron Heterometal Grid (2023)
Journal Article
Sato, H., Onuki, T., Newton, G. N., Shiga, T., & Oshio, H. (2023). Four Redox Isomers of a [3 × 3] Copper–Iron Heterometal Grid. Inorganic Chemistry, 62(44), 18003-18008. https://doi.org/10.1021/acs.inorgchem.3c02498

A mixed-valence heterometallic nonanuclear [3 × 3] grid complex, [CuI2CuII6FeIII(L)6](BF4)5·MeOH·9H2O (1; MeOH = methanol), was synthesized by a one-pot reaction of copper and iron ions with multidentate ligand 2,6-bis[5-(2-pyridinyl)-1H-pyrazol-3-yl... Read More about Four Redox Isomers of a [3 × 3] Copper–Iron Heterometal Grid.

Selective electrochemical CO 2 conversion with a hybrid polyoxometalate (2023)
Journal Article
Kuramochi, S., Cameron, J. M., Fukui, T., Jones, K. D., Argent, S. P., Kusaka, S., 
Newton, G. N. (2023). Selective electrochemical CO 2 conversion with a hybrid polyoxometalate. Chemical Communications, 59(72), 10801-10804. https://doi.org/10.1039/d3cc02138f

A multi-component coordination compound, in which ruthenium antenna complexes are connected to a polyoxotungstate core is presented. This hybrid cluster effectively promotes the electrochemical conversion of CO2 to C1 feedstocks, the selectivity of w... Read More about Selective electrochemical CO 2 conversion with a hybrid polyoxometalate.

Silver(I)-Catalyzed Synthesis of Cuneanes from Cubanes and their Investigation as Isosteres (2023)
Journal Article
Smith, E., Jones, K. D., O’Brien, L., Argent, S. P., Salome, C., Lefebvre, Q., 
Lam, H. W. (2023). Silver(I)-Catalyzed Synthesis of Cuneanes from Cubanes and their Investigation as Isosteres. Journal of the American Chemical Society, 145(30), 16365-16373. https://doi.org/10.1021/jacs.3c03207

Bridged or caged polycyclic hydrocarbons have rigid structures that project substituents into precise regions of 3D space, making them attractive as linking groups in materials science and as building blocks for medicinal chemistry. The efficient syn... Read More about Silver(I)-Catalyzed Synthesis of Cuneanes from Cubanes and their Investigation as Isosteres.

A lithium-air battery and gas handling system demonstrator (2023)
Journal Article
Jordan, J. W., Vailaya, G., Holc, C., Jenkins, M., McNulty, R. C., Puscalau, C., 
Johnson, L. R. (2024). A lithium-air battery and gas handling system demonstrator. Faraday Discussions, 248, 381-391. https://doi.org/10.1039/d3fd00137g

The lithium-air (Li-air) battery offers one of the highest practical specific energy densities of any battery system at >400 W h kgsystem−1. The practical cell is expected to operate in air, which is flowed into the positive porous electrode where it... Read More about A lithium-air battery and gas handling system demonstrator.

Application of a Synthetic Ferredoxin‐Inspired [4Fe4S]‐Peptide Maquette as the Redox Partner for an [FeFe]‐Hydrogenase (2023)
Journal Article
Bombana, A., Shanmugam, M., Collison, D., Kibler, A. J., Newton, G. N., JĂ€ger, C. M., 
Mitchell, N. J. (2023). Application of a Synthetic Ferredoxin‐Inspired [4Fe4S]‐Peptide Maquette as the Redox Partner for an [FeFe]‐Hydrogenase. ChemBioChem, 24(18), Article e202300250. https://doi.org/10.1002/cbic.202300250

‘Bacterial-type’ ferredoxins host a cubane [4Fe4S]2+/+ cluster that enables these proteins to mediate electron transfer and facilitate a broad range of biological processes. Peptide maquettes based on the conserved cluster-forming motif have previous... Read More about Application of a Synthetic Ferredoxin‐Inspired [4Fe4S]‐Peptide Maquette as the Redox Partner for an [FeFe]‐Hydrogenase.

Hydroperoxide-Mediated Degradation of Acetonitrile in the Lithium–Air Battery (2023)
Journal Article
McNulty, R. C., Jones, K. D., Holc, C., Jordan, J. W., Bruce, P. G., Walsh, D. A., 
Johnson, L. R. (2023). Hydroperoxide-Mediated Degradation of Acetonitrile in the Lithium–Air Battery. Advanced Energy Materials, 13(3), Article 2300579. https://doi.org/10.1002/aenm.202300579

Understanding and eliminating degradation of the electrolyte solution is arguably the major challenge in the development of high energy density lithium–air batteries. The use of acetonitrile provides cycle stability comparable to current state-of-the... Read More about Hydroperoxide-Mediated Degradation of Acetonitrile in the Lithium–Air Battery.

Diphosphoryl‐functionalized Polyoxometalates: Structurally and Electronically Tunable Hybrid Molecular Materials (2023)
Journal Article
Amin, S. S., Jones, K. D., Kibler, A. J., Damian, H. A., Cameron, J. M., Butler, K. S., Argent, S. P., Winslow, M., Robinson, D., Mitchell, N. J., Lam, H. W., & Newton, G. N. (2023). Diphosphoryl‐functionalized Polyoxometalates: Structurally and Electronically Tunable Hybrid Molecular Materials. Angewandte Chemie International Edition, 62(23), Article e202302446. https://doi.org/10.1002/anie.202302446

Herein, we report the synthesis and characterization of a new class of hybrid Wells–Dawson polyoxometalate (POM) containing a diphosphoryl group (P2O6X) of the general formula [P2W17O57(P2O6X)]6− (X=O, NH, or CR1R2). Modifying the bridging unit X was... Read More about Diphosphoryl‐functionalized Polyoxometalates: Structurally and Electronically Tunable Hybrid Molecular Materials.