Skip to main content

Research Repository

Advanced Search

Outputs (4)

Discovery of a Novel Polymer for Xeno-Free, Long-Term Culture of Human Pluripotent Stem Cell Expansion (2020)
Journal Article
Nasir, A., Thorpe, J., Burroughs, L., Meurs, J., Pijuan‐Galito, S., Irvine, D. J., Alexander, M. R., & Denning, C. (2020). Discovery of a Novel Polymer for Xeno-Free, Long-Term Culture of Human Pluripotent Stem Cell Expansion. Advanced Healthcare Materials, 10(6), Article 2001448. https://doi.org/10.1002/adhm.202001448

Human pluripotent stem cells (hPSCs) can be expanded and differentiated in vitro into almost any adult tissue cell type, and thus have great potential as a source for cell therapies with biomedical application. In this study, a fully-defined polymer... Read More about Discovery of a Novel Polymer for Xeno-Free, Long-Term Culture of Human Pluripotent Stem Cell Expansion.

Spatially Resolved Molecular Compositions of Insoluble Multilayer Deposits Responsible for Increased Pollution from Internal Combustion Engines (2020)
Journal Article
Edney, M. K., Lamb, J. S., Spanu, M., Smith, E. F., Steer, E., Wilmot, E., Reid, J., Barker, J., Alexander, M. R., Snape, C. E., & Scurr, D. J. (2020). Spatially Resolved Molecular Compositions of Insoluble Multilayer Deposits Responsible for Increased Pollution from Internal Combustion Engines. ACS Applied Materials and Interfaces, 12(45), 51026-51035. https://doi.org/10.1021/acsami.0c14532

Internal combustion engines are used heavily in diverse applications worldwide. Achieving the most efficient operation is key to improving air quality as society moves to a decarbonized energy system. Insoluble deposits that form within internal comb... Read More about Spatially Resolved Molecular Compositions of Insoluble Multilayer Deposits Responsible for Increased Pollution from Internal Combustion Engines.

Discovery of hemocompatible bacterial biofilm-resistant copolymers (2020)
Journal Article
Singh, T., Hook, A. L., Luckett, J., Maitz, M. F., Sperling, C., Werner, C., Davies, M. C., Irvine, D. J., Williams, P., & Alexander, M. R. (2020). Discovery of hemocompatible bacterial biofilm-resistant copolymers. Biomaterials, 260, Article 120312. https://doi.org/10.1016/j.biomaterials.2020.120312

© 2020 The Authors Blood-contacting medical devices play an important role within healthcare and are required to be biocompatible, hemocompatible and resistant to microbial colonization. Here we describe a high throughput screen for copolymers with t... Read More about Discovery of hemocompatible bacterial biofilm-resistant copolymers.

Immune-Instructive Polymers Control Macrophage Phenotype and Modulate the Foreign Body Response In Vivo (2020)
Journal Article
Rostam, H. M., Fisher, L. E., Hook, A. L., Burroughs, L., Luckett, J. C., Figueredo, G. P., Mbadugha, C., Teo, A. C., Latif, A., Kämmerling, L., Day, M., Lawler, K., Barrett, D., Elsheikh, S., Ilyas, M., Winkler, D. A., Alexander, M. R., & Ghaemmaghami, A. M. (2020). Immune-Instructive Polymers Control Macrophage Phenotype and Modulate the Foreign Body Response In Vivo. Matter, 2(6), 1564-1581. https://doi.org/10.1016/j.matt.2020.03.018

© 2020 The Author(s) Implantation of medical devices can result in inflammation. A large library of polymers is screened, and a selection found to promote macrophage differentiation towards pro- or anti-inflammatory phenotypes. The bioinstructive pro... Read More about Immune-Instructive Polymers Control Macrophage Phenotype and Modulate the Foreign Body Response In Vivo.