Skip to main content

Research Repository

Advanced Search

Outputs (2)

Human-scale tissues with patterned vascular networks by additive manufacturing of sacrificial sugar-protein composites (2020)
Journal Article
Eltaher, H. M., Abukunna, F. E., Ruiz-Cantu, L., Stone, Z., Yang, J., & Dixon, J. E. (2020). Human-scale tissues with patterned vascular networks by additive manufacturing of sacrificial sugar-protein composites. Acta Biomaterialia, 113, 339-349. https://doi.org/10.1016/j.actbio.2020.06.012

© 2020 Combating necrosis, by supplying nutrients and removing waste, presents the major challenge for engineering large three-dimensional (3D) tissues. Previous elegant work used 3D printing with carbohydrate glass as a cytocompatible sacrificial te... Read More about Human-scale tissues with patterned vascular networks by additive manufacturing of sacrificial sugar-protein composites.

3D printed scaffolds with controlled micro-/nano- porous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells (2019)
Journal Article
Prasopthum, A., Cooper, M., Shakesheff, K. M., & Yang, J. (2019). 3D printed scaffolds with controlled micro-/nano- porous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells. ACS Applied Materials and Interfaces, 11(21), 18896-18906. https://doi.org/10.1021/acsami.9b01472

The effect of topography in 3D printed polymer scaffolds on stem cell differentiation is a significantly under-explored area. Compared to 2D biomaterials on which various well-defined topographies have been incorporated and been shown to direct an ar... Read More about 3D printed scaffolds with controlled micro-/nano- porous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells.