Skip to main content

Research Repository

Advanced Search

Outputs (5)

Exploiting Generative Design for 3D Printing of Bacterial Biofilm Resistant Composite Devices (2021)
Journal Article
He, Y., Abdi, M., Trindade, G. F., Begines, B., Dubern, J. F., Prina, E., Hook, A. L., Choong, G. Y., Ledesma, J., Tuck, C. J., Rose, F. R., Hague, R. J., Roberts, C. J., De Focatiis, D. S., Ashcroft, I. A., Williams, P., Irvine, D. J., Alexander, M. R., & Wildman, R. D. (2021). Exploiting Generative Design for 3D Printing of Bacterial Biofilm Resistant Composite Devices. Advanced Science, 8(15), Article 2100249. https://doi.org/10.1002/advs.202100249

As the understanding of disease grows, so does the opportunity for personalization of therapies targeted to the needs of the individual. To bring about a step change in the personalization of medical devices it is shown that multi-material inkjet-bas... Read More about Exploiting Generative Design for 3D Printing of Bacterial Biofilm Resistant Composite Devices.

The electrospinning of a thermo-responsive polymer with peptide conjugates for phenotype support and extracellular matrix production of therapeutically relevant mammalian cells (2020)
Journal Article
Ruiter, F. A., Sidney, L. E., Kiick, K. L., Segal, J. I., Alexander, C., & Rose, F. R. A. J. (2020). The electrospinning of a thermo-responsive polymer with peptide conjugates for phenotype support and extracellular matrix production of therapeutically relevant mammalian cells. Biomaterials Science, 8(9), 2611-2626. https://doi.org/10.1039/c9bm01965k

Current cell expansion methods for tissue engineering and regenerative medicine applications rely on the use of enzymatic digestion passaging and 2D platforms. However, this enzymatic treatment significantly reduces cell quality, due to the destructi... Read More about The electrospinning of a thermo-responsive polymer with peptide conjugates for phenotype support and extracellular matrix production of therapeutically relevant mammalian cells.

A Reactive Prodrug Ink Formulation Strategy for Inkjet 3D Printing of Controlled Release Dosage Forms and Implants (2020)
Journal Article
He, Y., Foralosso, R., Ferraz Trindade, G., Ilchev, A., Cantu, L. R., Clark, E., Khaled, S., Hague, R. J. M., Tuck, C. J., Rose, F. R. A. J., Mantovani, G., Irvine, D., Roberts, C. J., & Wildman, R. D. (2020). A Reactive Prodrug Ink Formulation Strategy for Inkjet 3D Printing of Controlled Release Dosage Forms and Implants. Advanced Therapeutics, 3(6), Article 1900187. https://doi.org/10.1002/adtp.201900187

We propose a strategy for creating tuneable 3D printed drug delivery devices. 3D printing offers the opportunity for improved compliance and patient treatment outcomes through personalisation, but bottlenecks include finding formulations that provide... Read More about A Reactive Prodrug Ink Formulation Strategy for Inkjet 3D Printing of Controlled Release Dosage Forms and Implants.

Polymer microparticles with defined surface chemistry and topography mediate the formation of stem cell aggregates and cardiomyocyte function (2019)
Journal Article
Alvarez-Paino, M., Amer, M. H., Nasir, A., Cuzzucoli Crucitti, V., Thorpe, J., Burroughs, L., Needham, D., Denning, C., Alexander, M. R., Alexander, C., & Rose, F. (2019). Polymer microparticles with defined surface chemistry and topography mediate the formation of stem cell aggregates and cardiomyocyte function. ACS Applied Materials and Interfaces, 11(38), 34560-34574. https://doi.org/10.1021/acsami.9b04769

Surface-functionalized microparticles are relevant to fields spanning engineering and biomedicine, with uses ranging from cell culture to advanced cell delivery. Varying topographies of biomaterial surfaces are also being investigated as mediators of... Read More about Polymer microparticles with defined surface chemistry and topography mediate the formation of stem cell aggregates and cardiomyocyte function.

Photocrosslinkable gelatin hydrogels modulate the production of the major pro-inflammatory cytokine, TNF-α, by human mononuclear cells (2018)
Journal Article
Donaldson, A. R., Edi Tanase, C., Awuah, D., Vasanthi Bathri Narayanan, P., Hall, L., Nikkhah, M., Khademhosseini, A., Rose, F., Alexander, C., & Ghaemmaghami, A. M. (2018). Photocrosslinkable gelatin hydrogels modulate the production of the major pro-inflammatory cytokine, TNF-α, by human mononuclear cells. Frontiers in Bioengineering and Biotechnology, 6, Article 116. https://doi.org/10.3389/fbioe.2018.00116

Hydrogels are an attractive class of biomaterials in tissue engineering due to their inherently compatible properties for cell culture. Gelatin methacryloyl (GelMA) has shown significant promise in the fields of tissue engineering and drug delivery,... Read More about Photocrosslinkable gelatin hydrogels modulate the production of the major pro-inflammatory cytokine, TNF-α, by human mononuclear cells.