Skip to main content

Research Repository

Advanced Search

Outputs (13)

A novel dietary intervention reduces circulatory branched-chain amino acids by 50%: A pilot study of relevance for obesity and diabetes (2020)
Journal Article
Ramzan, I., Taylor, M., Phillips, B., Wilkinson, D., Smith, K., Hession, K., Idris, I., & Atherton, P. (2021). A novel dietary intervention reduces circulatory branched-chain amino acids by 50%: A pilot study of relevance for obesity and diabetes. Nutrients, 13(1), Article 95. https://doi.org/10.3390/nu13010095

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Elevated circulating branched-chain amino acids (BCAAs; isoleucine, leucine, and valine) are associated with obesity and type 2 diabetes (T2D). Reducing circulatory BCAAs by dietary restrictio... Read More about A novel dietary intervention reduces circulatory branched-chain amino acids by 50%: A pilot study of relevance for obesity and diabetes.

The mechanisms of skeletal muscle atrophy in response to transient knockdown of the vitamin D receptor in vivo (2020)
Journal Article
Bass, J. J., Kazi, A. A., Deane, C. S., Nakhuda, A., Ashcroft, S. P., Brook, M. S., Wilkinson, D. J., Phillips, B. E., Philp, A., Tarum, J., Kadi, F., Andersen, D., Garcia, A. M., Smith, K., Gallagher, I. J., Szewczyk, N. J., Cleasby, M. E., & Atherton, P. J. (2021). The mechanisms of skeletal muscle atrophy in response to transient knockdown of the vitamin D receptor in vivo. Journal of Physiology, 599(3), 963-979. https://doi.org/10.1113/JP280652

Key points: Reduced vitamin D receptor (VDR) expression prompts skeletal muscle atrophy. Atrophy occurs through catabolic processes, namely the induction of autophagy, while anabolism remains unchanged. In response to VDR-knockdown mitochondrial func... Read More about The mechanisms of skeletal muscle atrophy in response to transient knockdown of the vitamin D receptor in vivo.

Molecular and neural adaptations to neuromuscular electrical stimulation; Implications for ageing muscle (2020)
Journal Article
Guo, Y., Phillips, B. E., Atherton, P. J., & Piasecki, M. (2021). Molecular and neural adaptations to neuromuscular electrical stimulation; Implications for ageing muscle. Mechanisms of Ageing and Development, 193, Article 111402. https://doi.org/10.1016/j.mad.2020.111402

One of the most notable effects of ageing is an accelerated decline of skeletal muscle mass and function, resulting in various undesirable outcomes such as falls, frailty, and all-cause mortality. The loss of muscle mass directly leads to functional... Read More about Molecular and neural adaptations to neuromuscular electrical stimulation; Implications for ageing muscle.

Influence of sex on the age‐related adaptations of neuromuscular function and motor unit properties in elite masters athletes (2020)
Journal Article
Piasecki, J., Inns, T. B., Bass, J. J., Scott, R., Stashuk, D. W., Phillips, B. E., Atherton, P. J., & Piasecki, M. (2021). Influence of sex on the age‐related adaptations of neuromuscular function and motor unit properties in elite masters athletes. Journal of Physiology, 599(1), 193-205. https://doi.org/10.1113/jp280679

Motor unit (MU) remodelling acts to minimise loss of muscle fibres following denervation in older age, which may be more successful in masters athletes. Evidence suggests performance and neuromuscular function decline with age in this population, alt... Read More about Influence of sex on the age‐related adaptations of neuromuscular function and motor unit properties in elite masters athletes.

Associations between plasma branched chain amino acids and health biomarkers in response to resistance exercise training across age (2020)
Journal Article
Sayda, M. H., Phillips, B. E., Williams, J. P., Greenhaff, P. L., Wilkinson, D. J., Smith, K., & Atherton, P. J. (2020). Associations between plasma branched chain amino acids and health biomarkers in response to resistance exercise training across age. Nutrients, 12(10), Article 3029. https://doi.org/10.3390/nu12103029

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Leucine, isoleucine and valine (i.e., the branched chain amino acids, BCAA) play a key role in the support and regulation of tissue protein regulation and also as energy substrates. However, p... Read More about Associations between plasma branched chain amino acids and health biomarkers in response to resistance exercise training across age.

Molecular Transducers of Human Skeletal Muscle Remodeling under Different Loading States (2020)
Journal Article
Stokes, T., Timmons, J. A., Crossland, H., Tripp, T. R., Murphy, K., McGlory, C., Mitchell, C. J., Oikawa, S. Y., Morton, R. W., Phillips, B. E., Baker, S. K., Atherton, P. J., Wahlestedt, C., & Phillips, S. M. (2020). Molecular Transducers of Human Skeletal Muscle Remodeling under Different Loading States. Cell Reports, 32(5), Article 107980. https://doi.org/10.1016/j.celrep.2020.107980

Loading of skeletal muscle changes the tissue phenotype reflecting altered metabolic and functional demands. In humans, heterogeneous adaptation to loading complicates the identification of the underpinning molecular regulators. A within-person diffe... Read More about Molecular Transducers of Human Skeletal Muscle Remodeling under Different Loading States.

Glucagon-like peptide 1 infusions overcome anabolic resistance to feeding in older human muscle (2020)
Journal Article
Abdulla, H., Phillips, B. E., Wilkinson, D. J., Limb, M., Jandova, T., Bass, J. J., Rankin, D., Cegielski, J., Sayda, M., Crossland, H., Williams, J. P., Smith, K., Idris, I., & Atherton, P. J. (2020). Glucagon-like peptide 1 infusions overcome anabolic resistance to feeding in older human muscle. Aging Cell, 19(9), Article e13202. https://doi.org/10.1111/acel.13202

© 2020 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd Background: Despite its known insulin-independent effects, glucagon-like peptide-1 (GLP-1) role in muscle protein turnover has not been explored under fed-stat... Read More about Glucagon-like peptide 1 infusions overcome anabolic resistance to feeding in older human muscle.

Targeted genotype analyses of GWAS-derived lean body mass and handgrip strength-associated single nucleotide polymorphisms in elite masters athletes (2020)
Journal Article
Crossland, H., Piasecki, J., McCormick, D., Phillips, B. E., Wilkinson, D. J., Smith, K., McPhee, J. S., Piasecki, M., & Atherton, P. J. (2020). Targeted genotype analyses of GWAS-derived lean body mass and handgrip strength-associated single nucleotide polymorphisms in elite masters athletes. AJP - Regulatory, Integrative and Comparative Physiology, 319(2), R184-R194. https://doi.org/10.1152/ajpregu.00110.2020

Recent large genome-wide association studies (GWAS) have independently identified a set of genetic loci associated with lean body mass (LBM) and handgrip strength (HGS). Evaluation of these candidate single nucleotide polymorphisms (SNPs) may be usef... Read More about Targeted genotype analyses of GWAS-derived lean body mass and handgrip strength-associated single nucleotide polymorphisms in elite masters athletes.

The Effect of Whey Protein Supplementation on Myofibrillar Protein Synthesis and Performance Recovery in Resistance-Trained Men (2020)
Journal Article
Davies, R. W., Bass, J. J., Carson, B. P., Norton, C., Kozior, M., Wilkinson, D. J., Brook, M. S., Atherton, P. J., Smith, K., & Jakeman, P. M. (2020). The Effect of Whey Protein Supplementation on Myofibrillar Protein Synthesis and Performance Recovery in Resistance-Trained Men. Nutrients, 12(3), Article 845. https://doi.org/10.3390/nu12030845

Background: The aim of this study was to investigate the effect of whey protein supplementation on myofibrillar protein synthesis (myoPS) and muscle recovery over a 7-d period of intensified resistance training (RT). Methods: In a double-blind random... Read More about The Effect of Whey Protein Supplementation on Myofibrillar Protein Synthesis and Performance Recovery in Resistance-Trained Men.