Skip to main content

Research Repository

Advanced Search

All Outputs (2)

A thermophysical investigation of weakly coordinated metals in ionic liquids (2024)
Journal Article
Clarke, C. J., Clayton, T., Palmer, M. J., Lovelock, K. R. J., & Licence, P. (2024). A thermophysical investigation of weakly coordinated metals in ionic liquids. Chemical Science, 15(34), 13832-13840. https://doi.org/10.1039/d4sc03588g

Ionic liquids can solvate metals without strongly coordinating them, which gives a rare opportunity to probe the complexity of weakly coordinated metals through characterisation of liquid properties. In this work we use bis(trifluoromethanesulfonyl)i... Read More about A thermophysical investigation of weakly coordinated metals in ionic liquids.

Direct formation of copper nanoparticles from atoms at graphitic step edges lowers overpotential and improves selectivity of electrocatalytic CO2 reduction (2024)
Journal Article
Burwell, T., Thangamuthu, M., Aliev, G. N., Ghaderzadeh, S., Kohlrausch, E. C., Chen, Y., Theis, W., Norman, L. T., Alves Fernandes, J., Besley, E., Licence, P., & Khlobystov, A. N. (2024). Direct formation of copper nanoparticles from atoms at graphitic step edges lowers overpotential and improves selectivity of electrocatalytic CO2 reduction. Communications Chemistry, 7(1), Article 140. https://doi.org/10.1038/s42004-024-01218-y

A key strategy for minimizing our reliance on precious metals is to increase the fraction of surface atoms and improve the metal-support interface. In this work, we employ a solvent/ligand/counterion-free method to deposit copper in the atomic form d... Read More about Direct formation of copper nanoparticles from atoms at graphitic step edges lowers overpotential and improves selectivity of electrocatalytic CO2 reduction.