Skip to main content

Research Repository

Advanced Search

Outputs (2)

Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism (2022)
Journal Article
Fusi, R., Rosignoli, S., Lou, H., Sangiorgi, G., Bovina, R., Pattem, J. K., …Salvi, S. (2022). Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism. Proceedings of the National Academy of Sciences,

Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus anti-gravitropic offset (AGO) mechanisms. Here we report a new root angle regulatory gene termed ENHANCED GRA... Read More about Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism.

Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat (2022)
Journal Article
GRIFFITHS, M., ATKINSON, J. A., Gardiner, L. J., SWARUP, R., POUND, M. P., WILSON, M. H., …WELLS, D. M. (2022). Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat. Journal of Integrative Agriculture, 21(4), 917-932. https://doi.org/10.1016/s2095-3119%2821%2963700-0

The root system architecture (RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource adaptive responses in wheat (Triticum aestivum L.... Read More about Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat.