Skip to main content

Research Repository

Advanced Search

Empirical Quantification of Predictive Uncertainty Due to Model Discrepancy by Training with an Ensemble of Experimental Designs: An Application to Ion Channel Kinetics (2023)
Journal Article
Shuttleworth, J. G., Lei, C. L., Whittaker, D. G., Windley, M. J., Hill, A. P., Preston, S. P., & Mirams, G. R. (2024). Empirical Quantification of Predictive Uncertainty Due to Model Discrepancy by Training with an Ensemble of Experimental Designs: An Application to Ion Channel Kinetics. Bulletin of Mathematical Biology, 86(1), Article 2. https://doi.org/10.1007/s11538-023-01224-6

When using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate of their accuracy (uncertainty quantification). Because models of complex biological system... Read More about Empirical Quantification of Predictive Uncertainty Due to Model Discrepancy by Training with an Ensemble of Experimental Designs: An Application to Ion Channel Kinetics.

Ion channel model reduction using manifold boundaries (2022)
Journal Article
Whittaker, D. G., Wang, J., Shuttleworth, J., Venkateshappa, R., Kemp, J. M., Claydon, T. W., & Mirams, G. R. (2022). Ion channel model reduction using manifold boundaries. Journal of the Royal Society, Interface, 19(193), Article 20220193. https://doi.org/10.1098/rsif.2022.0193

Mathematical models of voltage-gated ion channels are used in basic research, industrial and clinical settings. These models range in complexity, but typically contain numerous variables representing the proportion of channels in a given state, and p... Read More about Ion channel model reduction using manifold boundaries.