Skip to main content

Research Repository

Advanced Search

Dr ISAAC TRIGUERO VELAZQUEZ's Outputs (4)

A fusion spatial attention approach for few-shot learning (2021)
Journal Article
Song, H., Deng, B., Pound, M., Özcan, E., & Triguero, I. (2022). A fusion spatial attention approach for few-shot learning. Information Fusion, 81, 187-202. https://doi.org/10.1016/j.inffus.2021.11.019

Few-shot learning is a challenging problem in computer vision that aims to learn a new visual concept from very limited data. A core issue is that there is a large amount of uncertainty introduced by the small training set. For example, the few image... Read More about A fusion spatial attention approach for few-shot learning.

SPMS-ALS: A Single-Point Memetic structure with accelerated local search for instance reduction (2021)
Journal Article
Le, H. L., Neri, F., & Triguero, I. (2022). SPMS-ALS: A Single-Point Memetic structure with accelerated local search for instance reduction. Swarm and Evolutionary Computation, 69, Article 100991. https://doi.org/10.1016/j.swevo.2021.100991

Real-world optimisation problems pose domain specific challenges that often require an ad-hoc algorithmic design to be efficiently addressed. The present paper investigates the optimisation of a key stage in data mining, known as instance reduction,... Read More about SPMS-ALS: A Single-Point Memetic structure with accelerated local search for instance reduction.

Beyond global and local multi-target learning (2021)
Journal Article
Basgalupp, M., Cerri, R., Schietgat, L., Triguero, I., & Vens, C. (2021). Beyond global and local multi-target learning. Information Sciences, 579, 508-524. https://doi.org/10.1016/j.ins.2021.08.022

In multi-target prediction, an instance has to be classified along multiple target variables at the same time, where each target represents a category or numerical value. There are several strategies to tackle multi-target prediction problems: the lo... Read More about Beyond global and local multi-target learning.

L2AE-D: Learning to Aggregate Embeddings for Few-shot Learning with Meta-level Dropout (2021)
Journal Article
Song, H., Torres Torres, M., Özcan, E., & Triguero, I. (2021). L2AE-D: Learning to Aggregate Embeddings for Few-shot Learning with Meta-level Dropout. Neurocomputing, 442, 200-208. https://doi.org/10.1016/j.neucom.2021.02.024

Few-shot learning focuses on learning a new visual concept with very limited labelled examples. A successful approach to tackle this problem is to compare the similarity between examples in a learned metric space based on convolutional neural network... Read More about L2AE-D: Learning to Aggregate Embeddings for Few-shot Learning with Meta-level Dropout.