Skip to main content

Research Repository

Advanced Search

Outputs (8)

High-performance, additively-manufactured atomic spectroscopy apparatus for portable quantum technologies (2022)
Journal Article

We demonstrate a miniaturised and highly robust system for performing Doppler-free spectroscopy on thermal atomic vapour for three frequencies as required for cold atom-based quantum technologies. The application of additive manufacturing techniques,... Read More about High-performance, additively-manufactured atomic spectroscopy apparatus for portable quantum technologies.

Prospects for strongly coupled atom-photon quantum nodes (2019)
Journal Article
Cooper, N., Briddon, C., Da Ros, E., Naniyil, V., Greenaway, M., & Hackermueller, L. (2019). Prospects for strongly coupled atom-photon quantum nodes. Scientific Reports, 9, Article 7798. https://doi.org/10.1038/s41598-019-44292-2

We discuss the trapping of cold atoms within microscopic voids drilled perpendicularly through the axis of an optical waveguide. The dimensions of the voids considered are between 1 and 40 optical wavelengths. By simulating light transmission across... Read More about Prospects for strongly coupled atom-photon quantum nodes.

Collimated dual species oven source and its characterisation via spatially resolved fluorescence spectroscopy (2018)
Journal Article
Cooper, N., Da Ros, E., Nute, J., Baldolini, D., Jouve, P., Hackermüller, L., & Langer, M. (in press). Collimated dual species oven source and its characterisation via spatially resolved fluorescence spectroscopy. Journal of Physics D: Applied Physics, 51(10), Article 105602. https://doi.org/10.1088/1361-6463/aaa285

We describe the design, construction and characterisation of a collimated, dual-species oven source for generating intense beams of lithium and caesium in UHV environments. Our design produces full beam overlap for the two species. Using an aligned m... Read More about Collimated dual species oven source and its characterisation via spatially resolved fluorescence spectroscopy.