Skip to main content

Research Repository

Advanced Search

Dr EMMA BARNEY's Outputs (24)

Correlating structure with non-linear optical properties in xAs40Se60 x (1 ? x)As40S60 glasses (2015)
Journal Article
Barney, E. R., Abdel-Moneim, N. S., Towey, J. J., Titman, J., McCarthy, J. E., Bookey, H. T., Kar, A., Furniss, D., & Seddon, A. B. (2015). Correlating structure with non-linear optical properties in xAs40Se60 x (1 − x)As40S60 glasses. Physical Chemistry Chemical Physics, 17(9), 6314-6327. https://doi.org/10.1039/c4cp05599c

A series of xAs40Se60·(100 − x)As40S60 glasses, where x = 0, 25, 33, 50, 67, 75 and 100 mol% As40Se60, has been studied using neutron and X-ray total scattering, Raman spectroscopy and 77Se MAS-NMR. The results are presented with measurements of non-... Read More about Correlating structure with non-linear optical properties in xAs40Se60 x (1 ? x)As40S60 glasses.

Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited) (2014)
Journal Article
Oladeji, A., Sujecki, S., Phillips, A., Seddon, A. B., Benson, T. M., Sakr, H., Tang, Z., Barney, E., Furniss, D., Sójka, Ł., Bereś-Pawlik, E., Scholle, K., Lamrini, S., & Furberg, P. (2015). Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited). Optical and Quantum Electronics, 47(6), 1389-1395. https://doi.org/10.1007/s11082-014-0086-x

The local environment of Dy3+in selenium-rich chalcogenide glasses (2014)
Journal Article
Barney, E. R., Tang, Z., Seddon, A., Furniss, D., Sujecki, S., Benson, T. M., Neate, N., & Gianolio, D. (in press). The local environment of Dy3+in selenium-rich chalcogenide glasses. RSC Advances, 4(80), https://doi.org/10.1039/C4RA07192A

The environment of Dy3+ is investigated when it is added as DyCl3 or Dy foil into two base glasses, Ge16.5As19−xGaxSe64.5, where x = 3 or 10 at%, at doping levels between 0 and 3000 parts per million by weight (ppmw) Dy3+. Extended X-ray Absorption F... Read More about The local environment of Dy3+in selenium-rich chalcogenide glasses.

First Identification of Rare-Earth Oxide Nucleation in Chalcogenide Glasses and Implications for Fabrication of Mid-Infrared Active Fibers (2013)
Journal Article
Tang, Z., Furniss, D., Fay, M., Neate, N. C., Cheng, Y., Barney, E., Sojka, L., Sujecki, S., Benson, T. M., & Seddon, A. B. (2014). First Identification of Rare-Earth Oxide Nucleation in Chalcogenide Glasses and Implications for Fabrication of Mid-Infrared Active Fibers. Journal of the American Ceramic Society, 97(2), 432-441. https://doi.org/10.1111/jace.12732

Gallium (Ga) helps solubilize rare-earth ions in chalcogenide glasses, but has been found to form the dominant crystallizing selenide phase in bulk glass in our previous work. Here, the crystallization behavior is compared of as-annealed 0–3000 ppmw... Read More about First Identification of Rare-Earth Oxide Nucleation in Chalcogenide Glasses and Implications for Fabrication of Mid-Infrared Active Fibers.