Skip to main content

Research Repository

Advanced Search

Dr ALEXANDER KONDRASHOV's Outputs (2)

Visualising ligand-binding to a GPCR in vivo using nanoBRET (2018)
Journal Article
Carvalheira Alcobia, D., Ziegler, A. I., Kondrashov, A., Comeo, E., Mistry, S., Kellam, B., Chang, A., Woolard, J., Hill, S. J., & Sloan, E. K. (2018). Visualising ligand-binding to a GPCR in vivo using nanoBRET. iScience, 6(8), 280-288. https://doi.org/10.1016/j.isci.2018.08.006

© 2018 The Author(s) The therapeutic action of a drug depends on its ability to engage with its molecular target in vivo. However, current drug discovery strategies quantify drug levels within organs rather than determining the binding of drugs direc... Read More about Visualising ligand-binding to a GPCR in vivo using nanoBRET.

Cardiomyocytes from human pluripotent stem cells: from laboratory curiosity to industrial biomedical platform (2015)
Journal Article
Denning, C., Borgdorff, V., Crutchley, J., Firth, K. S., George, V., Kalra, S., Kondrashov, A., Hoang, M. D., Mosqueira, D., Patel, A., Prodanov, L., Rajamohan, D., Skarnes, W. C., Smith, J. G., & Young, L. E. (2016). Cardiomyocytes from human pluripotent stem cells: from laboratory curiosity to industrial biomedical platform. BBA - Biochimica et Biophysica Acta, 1863(7), https://doi.org/10.1016/j.bbamcr.2015.10.014

Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas... Read More about Cardiomyocytes from human pluripotent stem cells: from laboratory curiosity to industrial biomedical platform.