Skip to main content

Research Repository

Advanced Search

Professor PAUL HOUSTON's Outputs (3)

Two-grid hp-version discontinuous Galerkin finite element methods for quasilinear elliptic PDEs on agglomerated coarse meshes (2022)
Journal Article
Congreve, S., & Houston, P. (2022). Two-grid hp-version discontinuous Galerkin finite element methods for quasilinear elliptic PDEs on agglomerated coarse meshes. Advances in Computational Mathematics, 48(5), Article 54. https://doi.org/10.1007/s10444-022-09968-w

This article considers the extension of two-grid hp-version discontinuous Galerkin finite element methods for the numerical approximation of second-order quasilinear elliptic boundary value problems of monotone type to the case when agglomerated poly... Read More about Two-grid hp-version discontinuous Galerkin finite element methods for quasilinear elliptic PDEs on agglomerated coarse meshes.

Linearization of the Travel Time Functional in Porous Media Flows (2022)
Journal Article
Rourke, C. J., Houston, P., Rourke, C., & van der Zee, K. G. (2022). Linearization of the Travel Time Functional in Porous Media Flows. SIAM Journal on Scientific Computing, 44(3), B531-B557. https://doi.org/10.1137/21M1451105

The travel time functional measures the time taken for a particle trajectory to travel from a given initial position to the boundary of the domain. Such evaluation is paramount in the postclosure safety assessment of deep geological storage facilitie... Read More about Linearization of the Travel Time Functional in Porous Media Flows.

Gibbs phenomena for Lq-best approximation in finite element spaces (2022)
Journal Article
Houston, P., Roggendorf, S., & Van Der Zee, K. G. (2022). Gibbs phenomena for Lq-best approximation in finite element spaces. ESAIM: Mathematical Modelling and Numerical Analysis, 56(1), 177-211. https://doi.org/10.1051/m2an/2021086

Recent developments in the context of minimum residual finite element methods are paving the way for designing quasi-optimal discretization methods in non-standard function spaces, such as L q-type Sobolev spaces. For q → 1, these methods have demons... Read More about Gibbs phenomena for Lq-best approximation in finite element spaces.