Skip to main content

Research Repository

Advanced Search

Professor CHRISTOPHER GERADA's Outputs (52)

Mild Hybridization of Turboprop Engine With High-Power-Density Integrated Electric Drives (2022)
Journal Article
Chen, Y., Yang, T., Khowja, M. R., La Rocca, A., Nasir, U., Chowdhury, S., Evans, D., Kember, D., Klonowski, T., Arnaud, Y., Apostin, L., Liger, T., Cossart, G., Vakil, G., Gerada, C., Bozhko, S., Detry, S., Diette, C., & Wheeler, P. (2022). Mild Hybridization of Turboprop Engine With High-Power-Density Integrated Electric Drives. IEEE Transactions on Transportation Electrification, 8(4), 4148-4162. https://doi.org/10.1109/TTE.2022.3160153

This article shares with the aerospace community a case study of turboprop mild hybridization using a recently developed integrated drive system in the University of Nottingham, U.K., within the ACHIEVE project under EU H2020 CleanSky 2 program (proj... Read More about Mild Hybridization of Turboprop Engine With High-Power-Density Integrated Electric Drives.

Practical Implementation and Associated Challenges of Integrated Torque Limiter (2022)
Presentation / Conference Contribution
Ilkhani, M. R., Syed, S. A., Connor, P. H., Vakil, G., Gerada, C., Rashed, M., & Benarous, M. Practical Implementation and Associated Challenges of Integrated Torque Limiter

Evolving of aircraft design towards further electrification requires safe and fault-free operation of all the components. More electric aircraft are increasingly utilizing electro-mechanical actuators (EMA). EMAs are prone to jamming and subsequent f... Read More about Practical Implementation and Associated Challenges of Integrated Torque Limiter.

Impact of Stator Segmentation on the Performance of Aerospace Propulsion Machines (2022)
Presentation / Conference Contribution
Ramanathan Mathavan Jeyabalan, R. K., Vakil, G., Gerada, D., Gerada, C., & Minshull, J. Impact of Stator Segmentation on the Performance of Aerospace Propulsion Machines. Presented at AeroTech, Pasadena California, United States

Electric machines offering a high power density are required for aerospace applications. Soft magnetic material with a high saturation flux density is one of the key component which is required to realize these power density targets. The need for a h... Read More about Impact of Stator Segmentation on the Performance of Aerospace Propulsion Machines.

Design Optimization of Modular Permanent Magnet Machine with Triple Three-Phase for Aircraft Starter Generator (2022)
Presentation / Conference Contribution
Wang, B., Rocca, A., Vakil, G., Yang, T., & Gerada, C. Design Optimization of Modular Permanent Magnet Machine with Triple Three-Phase for Aircraft Starter Generator. Presented at AeroTech

Permanent magnet (PM) electrical machine has far-reaching impacts in aviation electrification due to the continuous development in high power density and high efficiency electrical drives. The primary barrier to acceptance of permanent magnet machine... Read More about Design Optimization of Modular Permanent Magnet Machine with Triple Three-Phase for Aircraft Starter Generator.

Profiling the Eddy Current Losses Variations of High-Speed Permanent Magnet Machines in Plug-in Hybrid Electric Vehicles (2022)
Journal Article
Huang, Z., Tang, M., Golovanov, D., Yang, T., Herring, S., Zanchetta, P., & Gerada, C. (2022). Profiling the Eddy Current Losses Variations of High-Speed Permanent Magnet Machines in Plug-in Hybrid Electric Vehicles. IEEE Transactions on Transportation Electrification, 8(3), 3451--3463. https://doi.org/10.1109/TTE.2022.3152845

High-speed permanent magnet (PM) machines have been recognized as a popular choice for plug-in hybrid electric vehicles (PHEVs). Although high-speed operation can enhance the machine power density, more rotor eddy current losses can be expected. Thos... Read More about Profiling the Eddy Current Losses Variations of High-Speed Permanent Magnet Machines in Plug-in Hybrid Electric Vehicles.

A Low-Complexity Modulated Model Predictive Torque and Flux Control Strategy for PMSM Drives Without Weighting Factor (2022)
Journal Article
Nasr, A., Gu, C., Buticchi, G., Bozhko, S., & Gerada, C. (2023). A Low-Complexity Modulated Model Predictive Torque and Flux Control Strategy for PMSM Drives Without Weighting Factor. IEEE Journal of Emerging and Selected Topics in Power Electronics, 11(2), 1305-1316. https://doi.org/10.1109/jestpe.2022.3152652

This article proposes a modulated model predictive torque and flux control (M2PTFC) method with low complexity for a two-level voltage source inverter (2L-VSI)-fed permanent magnet synchronous motor (PMSM). The proposed strategy aims to reduce the co... Read More about A Low-Complexity Modulated Model Predictive Torque and Flux Control Strategy for PMSM Drives Without Weighting Factor.

Synchronous Reluctance Machines: A Comprehensive Review and Technology Comparison (2022)
Journal Article
Murataliyev, M., Degano, M., Nardo, M. D., Bianchi, N., & Gerada, C. (2022). Synchronous Reluctance Machines: A Comprehensive Review and Technology Comparison. Proceedings of the IEEE, 110(3), 382-399. https://doi.org/10.1109/jproc.2022.3145662

In the last decade, the trend toward higher efficiency and higher torque density electrical machines (EMs) without permanent magnets (PMs) for the industrial sector has rapidly increased. This work discusses the latest research and industrial advance... Read More about Synchronous Reluctance Machines: A Comprehensive Review and Technology Comparison.

A Comprehensive Design Guideline of Hairpin Windings for High Power Density Electric Vehicle Traction Motors (2022)
Journal Article
Zou, T., Gerada, D., La Rocca, A., Moslemin, M., Cairns, A., Cui, M., Bardalai, A., Zhang, F., & Gerada, C. (2022). A Comprehensive Design Guideline of Hairpin Windings for High Power Density Electric Vehicle Traction Motors. IEEE Transactions on Transportation Electrification, 8(3), 3578-3593. https://doi.org/10.1109/TTE.2022.3149786

The rapidly increasing demand on power density levels of electric vehicle (EV) drive systems is pushing the boundaries of traction motor performance. Hairpin windings are becoming a popular option for EV motors due to their reduced DC losses and impr... Read More about A Comprehensive Design Guideline of Hairpin Windings for High Power Density Electric Vehicle Traction Motors.

Effect of Multi-Size Magnetic Powder Gradation on Magnetic Properties of Novel Composite Magnetic Materials for HSPMSM (2022)
Journal Article
Yao, J., Zhang, Y., Wang, H., Zhang, F., & Gerada, C. (2022). Effect of Multi-Size Magnetic Powder Gradation on Magnetic Properties of Novel Composite Magnetic Materials for HSPMSM. IEEE Transactions on Transportation Electrification, 8(3), 3594-3605. https://doi.org/10.1109/tte.2022.3149820

The ordinary high-speed permanent magnet synchronous machines (HSPMSMs) have the problems of high rotor temperature rise. In order to solve these problems, a novel composite rotor HSPMSM (NCR-HSPMSM) is proposed in this article. The novel composite r... Read More about Effect of Multi-Size Magnetic Powder Gradation on Magnetic Properties of Novel Composite Magnetic Materials for HSPMSM.

Torque Limiters for Aerospace Actuator Application (2022)
Journal Article
Shahjahan Ahmad, S., Tom, L., La Rocca, A., La Rocca, S., Vakil, G., Gerada, C., & Benarous, M. (2022). Torque Limiters for Aerospace Actuator Application. Energies, 15(4), Article 1467. https://doi.org/10.3390/en15041467

Safety and reliability of electrical actuators are essential for success of all electric and more electric aircrafts (MEA). Torque limiters improve the reliability of electromechanical actuators (EMA) by restricting the amount of force experienced by... Read More about Torque Limiters for Aerospace Actuator Application.

Rotor Slot Design of Squirrel Cage Induction Motors with Improved Rated Efficiency and Starting Capability (2022)
Journal Article
Di Nardo, M., Marfoli, A., Degano, M., & Gerada, C. (2022). Rotor Slot Design of Squirrel Cage Induction Motors with Improved Rated Efficiency and Starting Capability. IEEE Transactions on Industry Applications, 58(3), 3383-3393. https://doi.org/10.1109/TIA.2022.3147156

Among the electro-mechanical devices transforming energy from electrical to mechanical, the squirrel cage induction motor can be surely considered a workhorse of the industry due to its robustness, low cost and good performance when directly fed by t... Read More about Rotor Slot Design of Squirrel Cage Induction Motors with Improved Rated Efficiency and Starting Capability.

Performance Entitlement by Using Novel High Strength Electrical Steels and Copper Alloys for High-Speed Laminated Rotor Induction Machines (2022)
Journal Article
Zhang, F., Gerada, D., Xu, Z., He, Y., Zhang, H., Hua, W., & Gerada, C. (2022). Performance Entitlement by Using Novel High Strength Electrical Steels and Copper Alloys for High-Speed Laminated Rotor Induction Machines. Electronics, 11(2), 210. https://doi.org/10.3390/electronics11020210

The laminated rotor Induction Machine (IM), with its simple construction and manufacturing, robustness, ease of control and comparatively lower cost remains by far the most utilized electromechanical energy converter. At very high speeds, traditional... Read More about Performance Entitlement by Using Novel High Strength Electrical Steels and Copper Alloys for High-Speed Laminated Rotor Induction Machines.