Skip to main content

Research Repository

Advanced Search

Prof. JONATHAN GARIBALDI's Outputs (2)

Explain the world – Using causality to facilitate better rules for fuzzy systems (2024)
Journal Article
Zhang, T., Wagner, C., & Garibaldi, J. M. (2024). Explain the world – Using causality to facilitate better rules for fuzzy systems. IEEE Transactions on Fuzzy Systems, 1-14. https://doi.org/10.1109/tfuzz.2024.3457962

The rules of a rule-based system provide explanations for its behaviour by revealing the relationships between the variables captured. However, ideally, we have AI systems which go beyond explainable AI (XAI), that is, systems which not only explain... Read More about Explain the world – Using causality to facilitate better rules for fuzzy systems.

A pattern-based algorithm with fuzzy logic bin selector for online bin packing problem (2024)
Journal Article
Lin, B., Li, J., Cui, T., Jin, H., Bai, R., Qu, R., & Garibaldi, J. (2024). A pattern-based algorithm with fuzzy logic bin selector for online bin packing problem. Expert Systems with Applications, 249, Article 123515. https://doi.org/10.1016/j.eswa.2024.123515

The online bin packing problem is a well-known optimization challenge that finds application in a wide range of real-world scenarios. In the paper, we propose a novel algorithm called FuzzyPatternPack(FPP), which leverages fuzzy inference and pattern... Read More about A pattern-based algorithm with fuzzy logic bin selector for online bin packing problem.