Skip to main content

Research Repository

Advanced Search

Professor DAVID GRANT's Outputs (90)

Hydride-based thermal energy storage (2022)
Journal Article
Adams, M., Buckley, C. E., Busch, M., Bunzel, R., Felderhoff, M., Heo, T. W., Humphries, T., Jensen, T. R., Klug, J., Klug, K. H., Møller, K. T., Paskevicius, M., Peil, S., Peinecke, K., Sheppard, D. A., Stuart, A. D., Urbanczyk, R., Wang, F., Walker, G. S., Wood, B. C., …Grant, D. M. (2022). Hydride-based thermal energy storage. Progress in Energy, 4(3), Article 032008. https://doi.org/10.1088/2516-1083/ac72ea

The potential and research surrounding metal hydride (MH) based thermal energy storage is discussed, focusing on next generation thermo-chemical energy storage (TCES) for concentrated solar power. The site availability model to represent the reaction... Read More about Hydride-based thermal energy storage.

Engineering the next generation of photorechargeable zinc-air batteries (2022)
Journal Article
Ola, O., Wang, N., Walker, G., Zhu, Y., & Grant, D. (2022). Engineering the next generation of photorechargeable zinc-air batteries. Current Opinion in Electrochemistry, 35, Article 101040. https://doi.org/10.1016/j.coelec.2022.101040

Solar energy has been identified as one of the key building blocks of the future energy generation mix required to meet greenhouse gas emissions targets while leading the way to a zero-carbon economy. In our opinion, photorechargeable zinc-air batter... Read More about Engineering the next generation of photorechargeable zinc-air batteries.

Perspective — Redox Ionic Liquid Electrolytes for Supercapattery (2022)
Journal Article
Guan, L., Chen, G. Z., Croft, A., & Grant, D. (2022). Perspective — Redox Ionic Liquid Electrolytes for Supercapattery. Journal of The Electrochemical Society, 169(3), Article 030529. https://doi.org/10.1149/1945-7111/ac5ba8

Adding redox activity into ionic liquids (ILs) extends their practical roles beyond an inert ionic conductor or electrolyte for applications in electrochemical energy storage. Especially for supercapatteries, redox ILs are desirable because they can... Read More about Perspective — Redox Ionic Liquid Electrolytes for Supercapattery.

Characterization of potential nanoporous sodium titanate film formation on Ti6Al4V and TiO2 microspherical substrates via wet-chemical alkaline conversion (2022)
Journal Article
Wadge, M. D., Carrington, M. J., Constantin, H., Orange, K., Greaves, J., Islam, M. T., Hossain, K. M. Z., Cooper, T. P., Kudrynskyi, Z. R., Felfel, R. M., Ahmed, I., & Grant, D. M. (2022). Characterization of potential nanoporous sodium titanate film formation on Ti6Al4V and TiO2 microspherical substrates via wet-chemical alkaline conversion. Materials Characterization, 185, Article 111760. https://doi.org/10.1016/j.matchar.2022.111760

The authors present novel insights into the formation of nanoporous, wet-chemically produced sodium titanate films onto microspherical substrates of varying composition. Microspheres of Ti6Al4V (atomised; ca. 20–50 μm), which were utilised due to the... Read More about Characterization of potential nanoporous sodium titanate film formation on Ti6Al4V and TiO2 microspherical substrates via wet-chemical alkaline conversion.

Development and in vitro assessment of a bi-layered chitosan-nano-hydroxyapatite osteochondral scaffold (2022)
Journal Article
Pitrolino, K. A., Felfel, R. M., Pellizzeri, L. M., McLaren, J., Popov, A. A., Sottile, V., Scotchford, C. A., Scammell, B. E., Roberts, G. A., & Grant, D. M. (2022). Development and in vitro assessment of a bi-layered chitosan-nano-hydroxyapatite osteochondral scaffold. Carbohydrate Polymers, 282, Article 119126. https://doi.org/10.1016/j.carbpol.2022.119126

An innovative approach was developed to engineer a multi-layered chitosan scaffold for osteochondral defect repair. A combination of freeze drying and porogen-leaching out methods produced a porous, bioresorbable scaffold with a distinct gradient of... Read More about Development and in vitro assessment of a bi-layered chitosan-nano-hydroxyapatite osteochondral scaffold.

Enhanced thermal and electrical properties by Ag nanoparticles decorated GO-CNT nanostructures in PEEK composites (2021)
Journal Article
Hu, C., Liu, T., Neate, N., Fay, M., Hou, X., Grant, D., & Xu, F. (2022). Enhanced thermal and electrical properties by Ag nanoparticles decorated GO-CNT nanostructures in PEEK composites. Composites Science and Technology, 218, Article 109201. https://doi.org/10.1016/j.compscitech.2021.109201

A nanostructure of graphene oxide (GO) and carbon nanotubes (CNTs) decorated with silver nanoparticles (AgGNT) has been prepared via a molecular-level-mixing (MLM) method followed by a subsequent freeze-drying and reduction process. The obtained well... Read More about Enhanced thermal and electrical properties by Ag nanoparticles decorated GO-CNT nanostructures in PEEK composites.

The interaction of volatile metal coatings during the laser powder bed fusion of copper (2021)
Journal Article
Speidel, A., Wadge, M. D., Gargalis, L., Cooper, T. P., Reynolds, W., Grant, D., Hague, R., Clare, A. T., & Murray, J. W. (2022). The interaction of volatile metal coatings during the laser powder bed fusion of copper. Journal of Materials Processing Technology, 299, Article 117332. https://doi.org/10.1016/j.jmatprotec.2021.117332

The high optical reflectance of Cu at near-infrared wavelengths narrows the process window to fabricate Cu parts by laser powder bed fusion (LPBF). Coating powders with optically absorptive materials has been investigated to improve processability an... Read More about The interaction of volatile metal coatings during the laser powder bed fusion of copper.

Long-Term Culture of Stem Cells on Phosphate-Based Glass Microspheres: Synergistic Role of Chemical Formulation and 3D Architecture (2021)
Journal Article
Gupta, D., Hossain, K. M. Z., Roe, M., Smith, E. F., Ahmed, I., Sottile, V., & Grant, D. M. (2021). Long-Term Culture of Stem Cells on Phosphate-Based Glass Microspheres: Synergistic Role of Chemical Formulation and 3D Architecture. ACS Applied Bio Materials, 4(8), 5987-6004. https://doi.org/10.1021/acsabm.1c00120

Phosphate-based glasses (PBGs) are biomaterials that degrade under physiological conditions and can be modified to release various ions depending on end applications. This study utilized slow-degrading (P45:45P2O5-16CaO-24MgO-11Na2O10 4Fe2O3, mol %)... Read More about Long-Term Culture of Stem Cells on Phosphate-Based Glass Microspheres: Synergistic Role of Chemical Formulation and 3D Architecture.

Development and Characterization of Phosphate-Based Glass Coatings via Suspension High-Velocity Oxy-Fuel (SHVOF) Thermal Spray Process (2021)
Journal Article
Bano, S., Rincon Romero, A., Islam, M. T., Grant, D. M., Ahmed, I., & Hussain, T. (2021). Development and Characterization of Phosphate-Based Glass Coatings via Suspension High-Velocity Oxy-Fuel (SHVOF) Thermal Spray Process. Journal of Thermal Spray Technology, 30(7), 1862-1874. https://doi.org/10.1007/s11666-021-01233-8

Phosphate based glasses (PBGs) are promising materials for biomedical applications due to their biocompatible and fully resorbable characteristics in aqueous environments. These glasses can be coated on to metal substrate via the technique of suspens... Read More about Development and Characterization of Phosphate-Based Glass Coatings via Suspension High-Velocity Oxy-Fuel (SHVOF) Thermal Spray Process.

New solutions for combatting implant bacterial infection based on silver nano-dispersed and gallium incorporated phosphate bioactive glass sputtered films: A preliminary study (2021)
Journal Article
Stuart, B. W., Stan, G. E., Popa, A. C., Carrington, M. J., Zgura, I., Necsulescu, M., & Grant, D. M. (2022). New solutions for combatting implant bacterial infection based on silver nano-dispersed and gallium incorporated phosphate bioactive glass sputtered films: A preliminary study. Bioactive Materials, 8, 325-340. https://doi.org/10.1016/j.bioactmat.2021.05.055

Ag/Ga were incorporated into resorbable orthopaedic phosphate bioactive glasses (PBG, containing P, Ca, Mg, Na, and Fe) thin films to demonstrate their potential to limit growth of Staphylococcus aureus and Escherichia coli in post-operative prosthet... Read More about New solutions for combatting implant bacterial infection based on silver nano-dispersed and gallium incorporated phosphate bioactive glass sputtered films: A preliminary study.

YAG thermal barrier coatings deposited by suspension and solution precursor thermal spray (2021)
Journal Article
Owoseni, T. A., Rincon Romero, A., Pala, Z., Venturi, F., Lester, E. H., Grant, D. M., & Hussain, T. (2021). YAG thermal barrier coatings deposited by suspension and solution precursor thermal spray. Ceramics International, 47(17), 23803-23813. https://doi.org/10.1016/j.ceramint.2021.05.087

Yttrium aluminium garnet (YAG) is a promising topcoat material for thermal barrier coatings due to its high temperature stability and better CMAS (calcium-magnesium-alumino-silicate) resistance. YAG topcoats were deposited by suspension and solution... Read More about YAG thermal barrier coatings deposited by suspension and solution precursor thermal spray.

Water resistant fibre/matrix interface in a degradable composite: Synergistic effects of heat treatment and polydopamine coating (2021)
Journal Article
Felfel, R. M., Parsons, A. J., Chen, M., Stuart, B. W., Wadge, M. D., & Grant, D. M. (2021). Water resistant fibre/matrix interface in a degradable composite: Synergistic effects of heat treatment and polydopamine coating. Composites Part A: Applied Science and Manufacturing, 146, Article 106415. https://doi.org/10.1016/j.compositesa.2021.106415

Retaining a robust fibre-matrix interface in an aqueous environment has been an enduring challenge for fibre-reinforced biocomposites. This study addresses the issue by applying a polydopamine coating as a coupling agent to annealed and non-annealed... Read More about Water resistant fibre/matrix interface in a degradable composite: Synergistic effects of heat treatment and polydopamine coating.

Localized heating element distribution in composite metal foam-phase change material: Fourier's law and creeping flow effects (2021)
Journal Article
Talebizadeh Sardari, P., Mohammed, H. I., Mahdi, J. M., Ghalambaz, M., Gillott, M., Walker, G. S., Grant, D., & Giddings, D. (2021). Localized heating element distribution in composite metal foam-phase change material: Fourier's law and creeping flow effects. International Journal of Energy Research, 45(9), 13380-13396. https://doi.org/10.1002/er.6665

A numerical parametric study is presented of a domestic thermal storage heat exchanger to explore the effect of highly localized positive temperature coefficient cylindrical heating elements in a phase change material (PCM) with conductive enhancemen... Read More about Localized heating element distribution in composite metal foam-phase change material: Fourier's law and creeping flow effects.

In-vitro cell interaction and apatite forming ability in simulated body fluid of ICIE16 and 13-93 bioactive glass coatings deposited by an emerging suspension high velocity oxy fuel (SHVOF) thermal spray (2020)
Journal Article
Bano, S., Romero, A. R., Grant, D., Nommeots-Nomm, A., Scotchford, C., Ahmed, I., & Hussain, T. (2021). In-vitro cell interaction and apatite forming ability in simulated body fluid of ICIE16 and 13-93 bioactive glass coatings deposited by an emerging suspension high velocity oxy fuel (SHVOF) thermal spray. Surface and Coatings Technology, 407, Article 126764. https://doi.org/10.1016/j.surfcoat.2020.126764

ICIE16 and 13-93 bioactive glasses have been proposed as alternative chemically stable compositions in physiological fluid keeping bioactivity comparable to Bioglass®. ICIE16 and 13-93 bioactive glasses coatings were produced via an emerging suspensi... Read More about In-vitro cell interaction and apatite forming ability in simulated body fluid of ICIE16 and 13-93 bioactive glass coatings deposited by an emerging suspension high velocity oxy fuel (SHVOF) thermal spray.

Efficient dye-removal via Ni-decorated graphene oxide-carbon nanotube nanocomposites (2020)
Journal Article
Hu, C., Le, A. T., Pung, S. Y., Stevens, L., Neate, N., Hou, X., Grant, D., & Xu, F. (2021). Efficient dye-removal via Ni-decorated graphene oxide-carbon nanotube nanocomposites. Materials Chemistry and Physics, 260, Article 124117. https://doi.org/10.1016/j.matchemphys.2020.124117

The nickel nanoparticles decorated graphene oxide-carbon nanotubes nanocomposite has been prepared through a novel molecular-level-mixing method followed by a freeze-drying and subsequent reduction process. The resulting products showed a well-disper... Read More about Efficient dye-removal via Ni-decorated graphene oxide-carbon nanotube nanocomposites.

Highly Ordered BN⊥–BN⊥ Stacking Structure for Improved Thermally Conductive Polymer Composites (2020)
Journal Article
Ghosh, B., Xu, F., Grant, D. M., Giangrande, P., Gerada, C., George, M. W., & Hou, X. (2020). Highly Ordered BN⊥–BN⊥ Stacking Structure for Improved Thermally Conductive Polymer Composites. Advanced Electronic Materials, 6(11), Article 2000627. https://doi.org/10.1002/aelm.202000627

The substantial heat generation in modern electronic devices is one of the major issues requiring efficient thermal management. This work demonstrates a novel concept for the design of thermally conducting networks inside a polymer matrix for the dev... Read More about Highly Ordered BN⊥–BN⊥ Stacking Structure for Improved Thermally Conductive Polymer Composites.

Tailoring the degradation rate of magnesium through biomedical nano-porous titanate coatings (2020)
Journal Article
Wadge, M. D., McGuire, J., Hanby, B. V., Felfel, R. M., Ahmed, I., & Grant, D. M. (2021). Tailoring the degradation rate of magnesium through biomedical nano-porous titanate coatings. Journal of Magnesium and Alloys, 9(1), 336-350. https://doi.org/10.1016/j.jma.2020.07.001

A novel approach was developed to reduce the corrosion rate of magnesium (Mg) metal, utilising titanate coatings. Magnetron sputtering was used to deposit ca. 500 nm titanium (Ti) coatings onto pure Mg discs, followed by hydrothermal conversion and i... Read More about Tailoring the degradation rate of magnesium through biomedical nano-porous titanate coatings.

Residual Stress Measurement of Suspension HVOF-Sprayed Alumina Coating via a Hole-Drilling Method (2020)
Journal Article
Owoseni, T. A., Bai, M., Curry, N., Lester, E. H., Grant, D. M., & Hussain, T. (2020). Residual Stress Measurement of Suspension HVOF-Sprayed Alumina Coating via a Hole-Drilling Method. Journal of Thermal Spray Technology, 29(6), 1339–1350. https://doi.org/10.1007/s11666-020-01072-z

The nature and magnitude of residual stresses in thermal-sprayed coatings determine their lifetime and failure mechanisms. The residual stresses of suspension high-velocity oxy-fuel (SHVOF) thermal sprayed alumina (Al2O3) coating were measured with h... Read More about Residual Stress Measurement of Suspension HVOF-Sprayed Alumina Coating via a Hole-Drilling Method.

Morphology and Defect Control of Metal Halide Perovskite Films for High-Performance Optoelectronics (2020)
Journal Article
Lei, L., Li, M., Grant, D. M., Yang, S., Yu, Y., Watts, J. A., & Amabilino, D. B. (2020). Morphology and Defect Control of Metal Halide Perovskite Films for High-Performance Optoelectronics. Chemistry of Materials, 32(14), 5958–5972. https://doi.org/10.1021/acs.chemmater.0c00798

Delicate morphology and defect control are crucial for high-performance optoelectronics. For metal halide perovskites, antisolvent precipitation is the most common process to realize the control and develop the state-of-art devices. However, the solu... Read More about Morphology and Defect Control of Metal Halide Perovskite Films for High-Performance Optoelectronics.

Production of High Silicon-Doped Hydroxyapatite Thin Film Coatings via Magnetron Sputtering: Deposition, Characterisation, and In Vitro Biocompatibility (2020)
Journal Article
Coe, S. C., Wadge, M. D., Felfel, R. M., Ahmed, I., Walker, G. S., Scotchford, C. A., & Grant, D. M. (2020). Production of High Silicon-Doped Hydroxyapatite Thin Film Coatings via Magnetron Sputtering: Deposition, Characterisation, and In Vitro Biocompatibility. Coatings, 10(2), Article 190. https://doi.org/10.3390/coatings10020190

In recent years, it has been found that small weight percent additions of silicon to HA can be used to enhance the initial response between bone tissue and HA. A large amount of research has been concerned with bulk materials, however, only recently... Read More about Production of High Silicon-Doped Hydroxyapatite Thin Film Coatings via Magnetron Sputtering: Deposition, Characterisation, and In Vitro Biocompatibility.