Skip to main content

Research Repository

Advanced Search

All Outputs (21)

Hydrodynamic characterization of soil compaction using integrated electrical resistivity and X-ray computed tomography (2021)
Journal Article
Cimpoiasu, M. O., Kuras, O., Wilkinson, P., Pridmore, T., & Mooney, S. J. (2021). Hydrodynamic characterization of soil compaction using integrated electrical resistivity and X-ray computed tomography. Vadose Zone Journal, 20(4), Article e20109. https://doi.org/10.1002/vzj2.20109

© 2020 The Authors. Vadose Zone Journal published by Wiley Periodicals LLC on behalf of Soil Science Society of America Modern agricultural practices can cause significant stress on soil, which ultimately has degrading effects, such as compaction. Th... Read More about Hydrodynamic characterization of soil compaction using integrated electrical resistivity and X-ray computed tomography.

Potential of geoelectrical methods to monitor root zone processes and structure: A review (2020)
Journal Article
Cimpoiasu, M. O., Kuras, O., Pridmore, T., & Mooney, S. J. (2020). Potential of geoelectrical methods to monitor root zone processes and structure: A review. Geoderma, 365, 114232. https://doi.org/10.1016/j.geoderma.2020.114232

© 2020 Understanding the processes that control mass and energy exchanges between soil, plants and the atmosphere plays a critical role for understanding the root zone system, but it is also beneficial for practical applications such as sustainable a... Read More about Potential of geoelectrical methods to monitor root zone processes and structure: A review.

Recovering Wind-induced Plant motion in Dense Field Environments via Deep Learning and Multiple Object Tracking (2019)
Journal Article
Gibbs, J. A., Burgess, A. J., Pound, M. P., Pridmore, T. P., & Murchie, E. H. (2019). Recovering Wind-induced Plant motion in Dense Field Environments via Deep Learning and Multiple Object Tracking. Plant Physiology, 181, 28-42. https://doi.org/10.1104/pp.19.00141

Understanding the relationships between local environmental conditions and plant structure and function is critical for both fundamental science and for improving the performance of crops in field settings. Wind-induced plant motion is important in m... Read More about Recovering Wind-induced Plant motion in Dense Field Environments via Deep Learning and Multiple Object Tracking.

A convolutional neural network for fast upsampling of undersampled tomograms in X-ray CT time-series using a representative highly sampled tomogram (2019)
Journal Article
Bellos, D., Basham, M., Pridmore, T., & French, A. P. (2019). A convolutional neural network for fast upsampling of undersampled tomograms in X-ray CT time-series using a representative highly sampled tomogram. Journal of Synchrotron Radiation, 26(3), 839-853. https://doi.org/10.1107/s1600577519003448

We designed a convolutional neural network to quickly and accurately upscale the sinograms of x-ray tomograms captured with a low number of projections; effectively increasing the number of projections. This is particularly useful for tomograms that... Read More about A convolutional neural network for fast upsampling of undersampled tomograms in X-ray CT time-series using a representative highly sampled tomogram.

Active Vision and Surface Reconstruction for 3D Plant Shoot Modelling (2019)
Journal Article
Gibbs, J., French, A., Murchie, E., Wells, D., Pound, M., & Pridmore, T. (2020). Active Vision and Surface Reconstruction for 3D Plant Shoot Modelling. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17(6), 1907-1917. https://doi.org/10.1109/TCBB.2019.2896908

Plant phenotyping is the quantitative description of a plant’s physiological, biochemical and anatomical status which can be used in trait selection and helps to provide mechanisms to link underlying genetics with yield. Here, an active vision- based... Read More about Active Vision and Surface Reconstruction for 3D Plant Shoot Modelling.

Deep Hourglass for Brain Tumor Segmentation (2019)
Book Chapter
Benson, E., Pound, M. P., French, A. P., Jackson, A. S., & Pridmore, T. P. (2019). Deep Hourglass for Brain Tumor Segmentation. In BrainLes 2018: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (419-428). Springer. https://doi.org/10.1007/978-3-030-11726-9_37

The segmentation of a brain tumour in an MRI scan is a challenging task, in this paper we present our results for this problem via the BraTS 2018 challenge, consisting of 210 high grade glioma (HGG) and 75 low grade glioma (LGG) volumes for training.... Read More about Deep Hourglass for Brain Tumor Segmentation.

Plant phenotyping: an active vision cell for three-dimensional plant shoot reconstruction (2018)
Journal Article
Gibbs, J., Pound, M., French, A. P., Wells, D. M., Murchie, E., & Pridmore, T. (2018). Plant phenotyping: an active vision cell for three-dimensional plant shoot reconstruction. Plant Physiology, 178(2), 524-534. https://doi.org/10.1104/pp.18.00664

© 2018 American Society of Plant Biologists. All rights reserved. Three-dimensional (3D) computer-generated models of plants are urgently needed to support both phenotyping and simulation-based studies such as photosynthesis modeling. However, the co... Read More about Plant phenotyping: an active vision cell for three-dimensional plant shoot reconstruction.

Erratum: Author Correction: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (Nature communications (2018) 9 1 (1408)) (2018)
Journal Article
Giri, J., Bhosale, R., Huang, G., Pandey, B. K., Parker, H., Zappala, S., …Bennett, M. J. (2018). Erratum: Author Correction: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (Nature communications (2018) 9 1 (1408)). Nature Communications, 9(1), Article 1810. https://doi.org/10.1038/s41467-018-04280-y

The original version of this Article omitted the following from the Acknowledgements:'We also thank DBT-CREST BT/HRD/03/01/2002.'This has been corrected in both the PDF and HTML versions of the Article.

Deep learning for multi-task plant phenotyping (2017)
Presentation / Conference Contribution
Pound, M. P., Atkinson, J. A., Wells, D. M., Pridmore, T. P., & French, A. P. (2017). Deep learning for multi-task plant phenotyping. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017 (2055-2063). https://doi.org/10.1109/ICCVW.2017.241

Plant phenotyping has continued to pose a challenge to computer vision for many years. There is a particular demand to accurately quantify images of crops, and the natural variability and structure of these plants presents unique difficulties. Recent... Read More about Deep learning for multi-task plant phenotyping.

Plant phenomics, from sensors to knowledge (2017)
Journal Article
Tardieu, F., Cabrera-Bosquet, L., Pridmore, T. P., & Bennett, M. J. (2017). Plant phenomics, from sensors to knowledge. Current Biology, 27(15), R770-R783. https://doi.org/10.1016/j.cub.2017.05.055

Major improvements in crop yield are needed to keep pace with population growth and climate change. While plant breeding efforts have greatly benefited from advances in genomics, profiling the crop phenome (i.e., the structure and function of plants)... Read More about Plant phenomics, from sensors to knowledge.

Quantification of root water uptake in soil using X-ray Computed Tomography and image based modelling (2017)
Journal Article
Daly, K. R., Tracy, S. R., Crout, N. M., Mairhofer, S., Pridmore, T. P., Mooney, S. J., & Roose, T. (2018). Quantification of root water uptake in soil using X-ray Computed Tomography and image based modelling. Plant, Cell and Environment, 41(1), 121-133. https://doi.org/10.1111/pce.12983

Spatially averaged models of root-soil interactions are often used to calculate plant water uptake. Using a combination of X-ray Computed Tomography (CT) and image based modelling we tested the accuracy of this spatial averaging by directly calculati... Read More about Quantification of root water uptake in soil using X-ray Computed Tomography and image based modelling.

SuRVoS: Super-Region Volume Segmentation workbench (2017)
Journal Article
Luengo, I., Darrow, M. C., Spink, M. C., Sun, Y., Dai, W., He, C. Y., …French, A. P. (2017). SuRVoS: Super-Region Volume Segmentation workbench. Journal of Structural Biology, 198(1), 43-53. https://doi.org/10.1016/j.jsb.2017.02.007

Segmentation of biological volumes is a crucial step needed to fully analyse their scientific content. Not having access to convenient tools with which to segment or annotate the data means many biological volumes remain under-utilised. Automatic seg... Read More about SuRVoS: Super-Region Volume Segmentation workbench.

Approaches to three-dimensional reconstruction of plant shoot topology and geometry (2016)
Journal Article
Gibbs, J., Pound, M. P., French, A. P., Wells, D. M., Murchie, E. H., & Pridmore, T. P. (2016). Approaches to three-dimensional reconstruction of plant shoot topology and geometry. Functional Plant Biology, 44(1), 62-75. https://doi.org/10.1071/FP16167

There are currently 805 million people classified as chronically undernourished, and yet the World’s population is still increasing. At the same time, global warming is causing more frequent and severe flooding and drought, thus destroying crops and... Read More about Approaches to three-dimensional reconstruction of plant shoot topology and geometry.

A patch-based approach to 3D plant shoot phenotyping (2016)
Journal Article
Pound, M. P., French, A. P., Fozard, J. A., Murchie, E. H., & Pridmore, T. P. (2016). A patch-based approach to 3D plant shoot phenotyping. Machine Vision and Applications, 27(5), 767-779. https://doi.org/10.1007/s00138-016-0756-8

The emerging discipline of plant phenomics aims to measure key plant characteristics, or traits, though as yet the set of plant traits that should be measured by automated systems is not well defined. Methods capable of recovering generic representat... Read More about A patch-based approach to 3D plant shoot phenotyping.

High-Resolution Three-Dimensional Structural Data Quantify the Impact of Photoinhibition on Long-Term Carbon Gain in Wheat Canopies in the Field (2015)
Journal Article
Burgess, A. J., Retkute, R., Pound, M. P., Foulkes, J., Preston, S. P., Jensen, O. E., …Murchie, E. H. (2015). High-Resolution Three-Dimensional Structural Data Quantify the Impact of Photoinhibition on Long-Term Carbon Gain in Wheat Canopies in the Field. Plant Physiology, 169(2), 1192-1204. https://doi.org/10.1104/pp.15.00722

Photoinhibition reduces photosynthetic productivity; however, it is difficult to quantify accurately in complex canopies partly because of a lack of high-resolution structural data on plant canopy architecture, which determines complex fluctuations o... Read More about High-Resolution Three-Dimensional Structural Data Quantify the Impact of Photoinhibition on Long-Term Carbon Gain in Wheat Canopies in the Field.

Root system markup language: Toward a unified root architecture description language (2015)
Journal Article
Meunier, F., Lobet, G., Pound, M. P., Diener, J., Pradal, C., Draye, X., …Schnepf, A. (2015). Root system markup language: Toward a unified root architecture description language. Plant Physiology, 167(3), 617-627. https://doi.org/10.1104/pp.114.253625

© 2015 American Society of Plant Biologists. All rights reserved. The number of image analysis tools supporting the extraction of architectural features of root systems has increased in recent years. These tools offer a handy set of complementary fac... Read More about Root system markup language: Toward a unified root architecture description language.

Automated recovery of 3D models of plant shoots from multiple colour images (2014)
Journal Article
Pound, M. P., French, A. P., Murchie, E. H., & Pridmore, T. P. (2014). Automated recovery of 3D models of plant shoots from multiple colour images. Plant Physiology, 166(4), https://doi.org/10.1104/pp.114.248971

Increased adoption of the systems approach to biological research has focussed attention on the use of quantitative models of biological objects. This includes a need for realistic 3D representations of plant shoots for quantification and modelling.... Read More about Automated recovery of 3D models of plant shoots from multiple colour images.

Mechanical modelling quantifies the functional importance of outer tissue layers during root elongation and bending (2014)
Journal Article
Dyson, R. J., Vizcay-Barrena, G., Band, L. R., Fernandes, A. N., French, A. P., Fozard, J. A., …Jensen, O. E. (2014). Mechanical modelling quantifies the functional importance of outer tissue layers during root elongation and bending. New Phytologist, 202(4), 1212-1222. https://doi.org/10.1111/nph.12764

Root elongation and bending require the coordinated expansion of multiple cells of different types. These processes are regulated by the action of hormones that can target distinct cell layers. We use a mathematical model to characterise the influenc... Read More about Mechanical modelling quantifies the functional importance of outer tissue layers during root elongation and bending.

The spatial character of sensor technology (2006)
Presentation / Conference Contribution
Reeves, S., Pridmore, T., Crabtree, A., Green, J., Benford, S., & O'Malley, C. (2006). The spatial character of sensor technology.

By considering the spatial character of sensor-based interactive systems, this paper investigates how discussions of seams and seamlessness in ubiquitous computing neglect the complex spatial character that is constructed as a side-effect of deployin... Read More about The spatial character of sensor technology.

Expected, sensed, and desired: A framework for designing sensing-based interaction (2005)
Journal Article
Benford, S., Schnädelbach, H., Koleva, B., Anastasi, R., Greenhalgh, C., Rodden, T., …Steed, A. (2005). Expected, sensed, and desired: A framework for designing sensing-based interaction. ACM Transactions on Computer-Human Interaction, 12(1), 3-30. https://doi.org/10.1145/1057237.1057239

Movements of interfaces can be analyzed in terms of whether they are expected, sensed, and desired. Expected movements are those that users naturally perform; sensed are those that can be measured by a computer; and desired movements are those that a... Read More about Expected, sensed, and desired: A framework for designing sensing-based interaction.