Skip to main content

Research Repository

Advanced Search

All Outputs (7)

Scalable bioreactor production of an O2‐protected [FeFe]‐hydrogenase enables simple aerobic handling for clean chemical synthesis (2024)
Journal Article
Cleary, S. E., Hall, S. J., Galan-Bataller, R., Lurshay, T. C., Hancox, C., Williamson, J. J., Heap, J. T., Reeve, H. A., & Morra, S. (2024). Scalable bioreactor production of an O2‐protected [FeFe]‐hydrogenase enables simple aerobic handling for clean chemical synthesis. ChemCatChem, 16(16), Article e202400193. https://doi.org/10.1002/cctc.202400193

The enzyme CbA5H, a [FeFe]-hydrogenase from Clostridium beijerinckii, has previously been shown to survive exposure to oxygen, making it a promising candidate for biotechnological applications. Thus far [NiFe]-hydrogenases are typically considered fo... Read More about Scalable bioreactor production of an O2‐protected [FeFe]‐hydrogenase enables simple aerobic handling for clean chemical synthesis.

Oxidation of cadaverine by putrescine oxidase from Rhodococcus erythropolis (2021)
Journal Article
Anyanwu, V. E., Hall, S. J., Stephens, G., & Pordea, A. (2021). Oxidation of cadaverine by putrescine oxidase from Rhodococcus erythropolis. Journal of Chemical Technology and Biotechnology, 96(10), 2950-2955. https://doi.org/10.1002/jctb.6851

BACKGROUND
Putrescine oxidase (EC 1.4.3.10) is of interest for the microbial production of unsubstituted platform nitrogen (N-)heterocycles, because it only requires inexpensive oxygen as co-substrate. Putrescine oxidase from Rhodococcus erythropoli... Read More about Oxidation of cadaverine by putrescine oxidase from Rhodococcus erythropolis.

Efficient bio-production of citramalate using an engineered Escherichia coli strain (2017)
Journal Article
Webb, J. P., Arnold, S. A., Baxter, S., Hall, S. J., Eastham, G., & Stephens, G. (2018). Efficient bio-production of citramalate using an engineered Escherichia coli strain. Microbiology, 164(2), 133-141. https://doi.org/10.1099/mic.0.000581

Citramalic acid is a central intermediate in a combined biocatalytic and chemocatalytic route to produce bio-based methylmethacrylate, the monomer used to manufacture Perspex and other high performance materials. We developed an engineered E. coli st... Read More about Efficient bio-production of citramalate using an engineered Escherichia coli strain.

Recombinant expression and characterisation of the oxygen-sensitive 2-enoate reductase from Clostridium sporogenes (2017)
Journal Article
Mordaka, P. M., Hall, S. J., Minton, N. P., & Stephens, G. (in press). Recombinant expression and characterisation of the oxygen-sensitive 2-enoate reductase from Clostridium sporogenes. Microbiology, https://doi.org/10.1099/mic.0.000568

‘Ene’-reductases have attracted significant attention for the preparation of chemical intermediates and biologically active products. To date, research has been focussed primarily on Old Yellow Enzyme-like proteins, due to their ease of handling, whe... Read More about Recombinant expression and characterisation of the oxygen-sensitive 2-enoate reductase from Clostridium sporogenes.

The putative mevalonate diphosphate decarboxylase from Picrophilus torridus is in reality a mevalonate-3-kinase with high potential for bioproduction of isobutene (2015)
Journal Article
Rossoni, L., Hall, S. J., Eastham, G., Licence, P., & Stephens, G. (2015). The putative mevalonate diphosphate decarboxylase from Picrophilus torridus is in reality a mevalonate-3-kinase with high potential for bioproduction of isobutene. Applied and Environmental Microbiology, 81(7), https://doi.org/10.1128/AEM.04033-14

Mevalonate diphosphate decarboxylase (MVD) is an ATP-dependent enzyme that catalyzes the phosphorylation/decarboxylation of (R)-mevalonate-5-diphosphate to isopentenyl pyrophosphate in the mevalonate (MVA) pathway.MVD is a key enzyme in engineered me... Read More about The putative mevalonate diphosphate decarboxylase from Picrophilus torridus is in reality a mevalonate-3-kinase with high potential for bioproduction of isobutene.

Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation (2014)
Journal Article
Dixon, J. E., Shah, D. A., Rogers, C., Hall, S., Weston, N., Parmenter, C. D., McNally, D., Denning, C., & Shakesheff, K. M. (2014). Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation. Proceedings of the National Academy of Sciences, 111(15), 5580-5585. https://doi.org/10.1073/pnas.1319685111

The ability of materials to define the architecture and microenvironment experienced by cells provides new opportunities to direct the fate of human pluripotent stem cells (HPSCs) [Robinton DA, Daley GQ (2012) Nature 481(7381):295-305]. However, the... Read More about Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation.