Skip to main content

Research Repository

Advanced Search

All Outputs (7)

Role of the renin–angiotensin–aldosterone and kinin–kallikrein systems in the cardiovascular complications of COVID-19 and long COVID (2021)
Journal Article
Cooper, S. L., Boyle, E., Jefferson, S. R., Heslop, C. R. A., Mohan, P., Mohanraj, G. G. J., …Woolard, J. (2021). Role of the renin–angiotensin–aldosterone and kinin–kallikrein systems in the cardiovascular complications of COVID-19 and long COVID. International Journal of Molecular Sciences, 22(15), Article 8255. https://doi.org/10.3390/ijms22158255

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. Patients may present as asymptomatic or demonstrate mild to severe and life-threatening symptoms. Although COVID-19 has a respiratory foc... Read More about Role of the renin–angiotensin–aldosterone and kinin–kallikrein systems in the cardiovascular complications of COVID-19 and long COVID.

Probing the binding of interleukin-23 to individual receptor components and the IL-23 heteromeric receptor complex in living cells using NanoBRET (2021)
Journal Article
Lay, C. S., Bridges, A., Goulding, J., Briddon, S. J., Soloviev, Z., Craggs, P. D., & Hill, S. J. (2022). Probing the binding of interleukin-23 to individual receptor components and the IL-23 heteromeric receptor complex in living cells using NanoBRET. Cell Chemical Biology, 29(1), 19-29.e6. https://doi.org/10.1016/j.chembiol.2021.05.002

Interleukin-23 (IL-23) is a pro-inflammatory cytokine involved in the host defence against pathogens, but also implicated in the development of several autoimmune disorders. The IL- 23 receptor has become a key target for drug discovery but the exact... Read More about Probing the binding of interleukin-23 to individual receptor components and the IL-23 heteromeric receptor complex in living cells using NanoBRET.

Use of NanoBiT and NanoBRET to monitor fluorescent VEGF-A binding kinetics to VEGFR2/NRP1 heteromeric complexes in living cells (2021)
Journal Article
Peach, C. J., Kilpatrick, L. E., Woolard, J., & Hill, S. J. (2021). Use of NanoBiT and NanoBRET to monitor fluorescent VEGF-A binding kinetics to VEGFR2/NRP1 heteromeric complexes in living cells. British Journal of Pharmacology, 178(12), 2393-2411. https://doi.org/10.1111/bph.15426

Background and Purpose: VEGF‐A is a key mediator of angiogenesis, primarily signalling via VEGF receptor 2 (VEGFR2). Endothelial cells also express the co‐receptor neuropilin‐1 (NRP1) that potentiates VEGF‐A/VEGFR2 signalling. VEGFR2 and NRP1 had d... Read More about Use of NanoBiT and NanoBRET to monitor fluorescent VEGF-A binding kinetics to VEGFR2/NRP1 heteromeric complexes in living cells.

Efficient G protein coupling is not required for agonist‐mediated internalization and membrane reorganization of the adenosine A 3 receptor (2021)
Journal Article
Stoddart, L. A., Kilpatrick, L. E., Corriden, R., Kellam, B., Briddon, S. J., & Hill, S. J. (2021). Efficient G protein coupling is not required for agonist‐mediated internalization and membrane reorganization of the adenosine A 3 receptor. FASEB Journal, 35(4), Article e21211. https://doi.org/10.1096/fj.202001729rr

Organization of G protein-coupled receptors at the plasma membrane has been the focus of much recent attention. Advanced microscopy techniques have shown that these receptors can be localized to discrete microdomains and reorganization upon ligand ac... Read More about Efficient G protein coupling is not required for agonist‐mediated internalization and membrane reorganization of the adenosine A 3 receptor.

Detection of genome-edited and endogenously expressed G protein-coupled receptors (2021)
Journal Article
Soave, M., Stoddart, L. A., White, C. W., Kilpatrick, L. E., Goulding, J., Briddon, S. J., & Hill, S. J. (2021). Detection of genome-edited and endogenously expressed G protein-coupled receptors. FEBS Journal, 288(8), 2585-2601. https://doi.org/10.1111/febs.15729

© 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and major targets for FDA-approved d... Read More about Detection of genome-edited and endogenously expressed G protein-coupled receptors.

Investigation of Receptor Heteromers Using NanoBRET Ligand Binding (2021)
Journal Article
Johnstone, E. K. M., See, H. B., Abhayawardana, R. S., Song, A., Rosengren, K. J., Hill, S. J., & Pfleger, K. D. G. (2021). Investigation of Receptor Heteromers Using NanoBRET Ligand Binding. International Journal of Molecular Sciences, 22(3), Article 1082. https://doi.org/10.3390/ijms22031082

Receptor heteromerization is the formation of a complex involving at least two different receptors with pharmacology that is distinct from that exhibited by its constituent receptor units. Detection of these complexes and monitoring their pharmacolog... Read More about Investigation of Receptor Heteromers Using NanoBRET Ligand Binding.

A lipid-anchored neurokinin 1 receptor antagonist prolongs pain relief by a three-pronged mechanism of action targeting the receptor at the plasma membrane and in endosomes (2021)
Journal Article
Mai, Q. N., Shenoy, P., Quach, T., Retamal, J. S., Gondin, A. B., Yeatman, H. R., …Veldhuis, N. A. (2021). A lipid-anchored neurokinin 1 receptor antagonist prolongs pain relief by a three-pronged mechanism of action targeting the receptor at the plasma membrane and in endosomes. Journal of Biological Chemistry, 296, Article 100345. https://doi.org/10.1016/J.JBC.2021.100345

G-protein-coupled receptors (GPCRs) are traditionally known for signaling at the plasma membrane, but they can also signal from endosomes after internalization to control important pathophysiological processes. In spinal neurons, sustained endosomal... Read More about A lipid-anchored neurokinin 1 receptor antagonist prolongs pain relief by a three-pronged mechanism of action targeting the receptor at the plasma membrane and in endosomes.