Skip to main content

Research Repository

Advanced Search

All Outputs (7)

A Low-Complexity Artificial Neural Network-Based Optimal Droop Gain Design Strategy for DC Microgrids Onboard the More Electric Aircraft (2023)
Journal Article
Hussaini, H., Yang, T., Bai, G., Urrutia-Ortiz, M., & Bozhko, S. (2023). A Low-Complexity Artificial Neural Network-Based Optimal Droop Gain Design Strategy for DC Microgrids Onboard the More Electric Aircraft. IEEE Transactions on Transportation Electrification, https://doi.org/10.1109/TTE.2023.3333270

This article proposes a new droop control design method based on a “reversed data training” of artificial neural network (ANN). Conventionally, after data collection, the ANN is used for forward mapping the control variables (inputs) and system respo... Read More about A Low-Complexity Artificial Neural Network-Based Optimal Droop Gain Design Strategy for DC Microgrids Onboard the More Electric Aircraft.

Design Analysis of SiC-MOSFET Based Bidirectional SSPC for Aircraft High Voltage DC Distribution Network (2023)
Journal Article
A. Khera, F., Bozhko, S., & Wheeler, P. (2023). Design Analysis of SiC-MOSFET Based Bidirectional SSPC for Aircraft High Voltage DC Distribution Network. IEEE Access, 11, 113900-13912. https://doi.org/10.1109/ACCESS.2023.3323599

Research on electric power systems (EPSs) for the aviation industry has recently grown significantly due to the need to reduce global CO2 emissions from transportation. To fulfill the power requirements of a more electric aircraft (MEA), DC power dis... Read More about Design Analysis of SiC-MOSFET Based Bidirectional SSPC for Aircraft High Voltage DC Distribution Network.

An Advanced Dual-Carrier-Based Multi-Optimized PWM Strategy of Three-Level Neutral-Point-Clamped Converters for More-Electric-Aircraft Applications (2023)
Journal Article
Guo, F., M. Diab, A., Shen Yeoh, S., Yang, T., Bozhko, S., Wheeler, P., & Zhao, Y. (2024). An Advanced Dual-Carrier-Based Multi-Optimized PWM Strategy of Three-Level Neutral-Point-Clamped Converters for More-Electric-Aircraft Applications. IEEE Transactions on Energy Conversion, 39(1), 356-367. https://doi.org/10.1109/TEC.2023.3312599

Since three-level neutral-point-clamped (3L-NPC) power generation units bring much competitiveness to the next-generation electric starter/generator (ESG) system for more-electric-aircraft (MEA) applications, the versatile multi-optimized pulse-width... Read More about An Advanced Dual-Carrier-Based Multi-Optimized PWM Strategy of Three-Level Neutral-Point-Clamped Converters for More-Electric-Aircraft Applications.

Artificial Intelligence-Based Hierarchical Control Design for Current Sharing and Voltage Restoration in DC Microgrid of the More Electric Aircraft (2023)
Journal Article
Hussaini, H., Yang, T., Bai, G., Urrutia-Ortiz, M., & Bozhko, S. (2024). Artificial Intelligence-Based Hierarchical Control Design for Current Sharing and Voltage Restoration in DC Microgrid of the More Electric Aircraft. IEEE Transactions on Transportation Electrification, 10(1), 566-582. https://doi.org/10.1109/tte.2023.3289773

In the conventional droop control method employed in the primary control layer, there is an inherent tradeoff between current-sharing accuracy and voltage regulation. Consequently, to achieve both accurate current sharing and maintain the bus voltage... Read More about Artificial Intelligence-Based Hierarchical Control Design for Current Sharing and Voltage Restoration in DC Microgrid of the More Electric Aircraft.

Dynamic Average Consensus with Anti-windup applied to Interlinking Converters in AC/DC Microgrids under Economic Dispatch and Delays (2023)
Journal Article
Martinez-Gomez, M., Orchard, M. E., & Bozhko, S. (2023). Dynamic Average Consensus with Anti-windup applied to Interlinking Converters in AC/DC Microgrids under Economic Dispatch and Delays. IEEE Transactions on Smart Grid, 14(5), 4137-4140. https://doi.org/10.1109/tsg.2023.3291208

This work proposes an application of dynamic average consensus in interlinking converters of AC/DC microgrids with a distributed anti-windup for dealing with steady-state errors from communication delays. The proposed controller consists of a PI cont... Read More about Dynamic Average Consensus with Anti-windup applied to Interlinking Converters in AC/DC Microgrids under Economic Dispatch and Delays.

Optimal Droop Control Design Using Artificial Intelligent Techniques for Electric Power Systems of More-Electric Aircraft (2023)
Journal Article
Hussaini, H., Yang, T., Gao, Y., Wang, C., Urrutia, M., & Bozhko, S. (2024). Optimal Droop Control Design Using Artificial Intelligent Techniques for Electric Power Systems of More-Electric Aircraft. IEEE Transactions on Transportation Electrification, 10(1), 2192-2206. https://doi.org/10.1109/tte.2023.3271763

The design of the droop coefficient is one of the challenges for the droop control of converters, as it plays a key role in enhancing the performance of the droop control method. This article proposes an artificial neural network (ANN) based techniqu... Read More about Optimal Droop Control Design Using Artificial Intelligent Techniques for Electric Power Systems of More-Electric Aircraft.

Enhanced Starting Control Scheme for PMM-Based Starter/Generator System for MEA (2023)
Journal Article
Mohamed, M. A. A., Shen Yeoh, S., Atkin, J., Diab, A. M., Khalaf, M., & Bozhko, S. (2023). Enhanced Starting Control Scheme for PMM-Based Starter/Generator System for MEA. Aerospace, 10(2), Article 168. https://doi.org/10.3390/aerospace10020168

A control approach for aircraft Starter/Generator (S/G) with Permanent Magnet Machine (PMM) operating in Flux Weakening (FW) mode is presented. The proposed strategy helps the previous approaches which are adopted for the Variable Voltage Bus (VVB) o... Read More about Enhanced Starting Control Scheme for PMM-Based Starter/Generator System for MEA.