Skip to main content

Research Repository

Advanced Search

All Outputs (2)

A descriptor guiding the selection of catalyst supports for ammonia synthesis (2025)
Journal Article
Weilhard, A., Popov, I., Kohlrausch, E. C., Aliev, G. N., Blankenship, L. S., Norman, L. T., Ghaderzadeh, S., Smith, L., Isaacs, M., O'Shea, J., Lanterna, A. E., Theis, W., Morgan, D., Hutchings, G. J., Besley, E., Khlobystov, A. N., & Alves Fernandes, J. (2025). A descriptor guiding the selection of catalyst supports for ammonia synthesis. Chemical Science, 16(11), 4851-4859. https://doi.org/10.1039/d4sc08253b

The efforts to increase the active surface area of catalysts led to reduction of metal particle size, down to single metal atoms. This results in increasing importance of support-metal interactions. We demonstrate the mechanisms through which the sup... Read More about A descriptor guiding the selection of catalyst supports for ammonia synthesis.

Evolution of amorphous ruthenium nanoclusters into stepped truncated nano-pyramids on graphitic surfaces boosts hydrogen production from ammonia (2025)
Journal Article
Chen, Y., Young, B. J., Aliev, G. N., Kordatos, A., Popov, I., Ghaderzadeh, S., Liddy, T. J., Cull, W. J., Kohlrausch, E. C., Weilhard, A., Hutchings, G. J., Besley, E., Theis, W., Alves Fernandes, J., & Khlobystov, A. N. (2025). Evolution of amorphous ruthenium nanoclusters into stepped truncated nano-pyramids on graphitic surfaces boosts hydrogen production from ammonia. Chemical Science, 16(6), 2648-2660. https://doi.org/10.1039/d4sc06382a

Atomic-scale changes can significantly impact heterogeneous catalysis, yet their atomic mechanisms are challenging to establish using conventional analysis methods. By using identical location scanning transmission electron microscopy (IL-STEM), whic... Read More about Evolution of amorphous ruthenium nanoclusters into stepped truncated nano-pyramids on graphitic surfaces boosts hydrogen production from ammonia.