Skip to main content

Research Repository

Advanced Search

All Outputs (8)

Comparative transcriptome reprogramming in oak galls containing asexual or sexual generations of gall wasps (2024)
Journal Article
Bellows, E., Heatley, M., Shah, N., Archer, N., Giles, T., & Fray, R. (2024). Comparative transcriptome reprogramming in oak galls containing asexual or sexual generations of gall wasps. Plant Biology, https://doi.org/10.1111/plb.13670

Oak gall wasps have evolved strategies to manipulate the developmental pathways of their host to induce gall formation. This provides shelter and nutrients for the developing larva. Galls are entirely host tissue; however, the initiation, development... Read More about Comparative transcriptome reprogramming in oak galls containing asexual or sexual generations of gall wasps.

m6A mRNA methylation in human brain is disrupted in Lewy body disorders (2023)
Journal Article
Martinez De La Cruz, B., Gell, C., Markus, R., Macdonald, I., Fray, R., & Knight, H. M. (2023). m6A mRNA methylation in human brain is disrupted in Lewy body disorders. Neuropathology and Applied Neurobiology, 49(1), Article e12885. https://doi.org/10.1111/nan.12885

N6-methyladenosine modification of RNA (m6A) regulates translational control which may influence neuronal dysfunction underlying neurodegenerative diseases. Using microscopy and a machine learning approach, we performed cellular profiling of m6A-RNA... Read More about m6A mRNA methylation in human brain is disrupted in Lewy body disorders.

The importance of m6A topology in chicken embryo mRNA: a precise mapping of m6A at the conserved chicken β-actin zipcode (2023)
Journal Article
Baron, F., Zhang, M., Archer, N., Bellows, E., Knight, H. M., Welham, S., …Bodi, Z. (2023). The importance of m6A topology in chicken embryo mRNA: a precise mapping of m6A at the conserved chicken β-actin zipcode. RNA, 29(6), 777-789. https://doi.org/10.1261/rna.079615.123

N6-methyladenosine (m6A) in mRNA regulates almost every stage in the mRNA life cycle, and the development of methodologies for the high-throughput detection of methylated sites in mRNA using m6A-specific methylated RNA immunoprecipitation with next-g... Read More about The importance of m6A topology in chicken embryo mRNA: a precise mapping of m6A at the conserved chicken β-actin zipcode.

Exploring anti-androgen therapies in hormone dependent prostate cancer and new therapeutic routes for castration resistant prostate cancer (2022)
Journal Article
Harris, A. E., Metzler, V. M., Lothion-Roy, J., Varun, D., Woodcock, C. L., Haigh, D. B., …Jeyapalan, J. N. (2022). Exploring anti-androgen therapies in hormone dependent prostate cancer and new therapeutic routes for castration resistant prostate cancer. Frontiers in Endocrinology, 13, Article 1006101. https://doi.org/10.3389/fendo.2022.1006101

Androgen deprivation therapies (ADTs) are important treatments which inhibit androgen-induced prostate cancer (PCa) progression by either preventing androgen biosynthesis (e.g. abiraterone) or by antagonizing androgen receptor (AR) function (e.g. bic... Read More about Exploring anti-androgen therapies in hormone dependent prostate cancer and new therapeutic routes for castration resistant prostate cancer.

The METTL3 RNA Methyltransferase Regulates Transcriptional Networks in Prostate Cancer (2022)
Journal Article
Haigh, D. B., Woodcock, C. L., Lothion-Roy, J., Harris, A. E., Metzler, V. M., Persson, J. L., …Mongan, N. P. (2022). The METTL3 RNA Methyltransferase Regulates Transcriptional Networks in Prostate Cancer. Cancers, 14(20), Article 5148. https://doi.org/10.3390/cancers14205148

Prostate cancer (PCa) is a leading cause of cancer-related deaths and is driven by aberrant androgen receptor (AR) signalling. For this reason, androgen deprivation therapies (ADTs) that suppress androgen-induced PCa progression either by preventing... Read More about The METTL3 RNA Methyltransferase Regulates Transcriptional Networks in Prostate Cancer.

mRNA adenosine methylase (MTA) deposits m6A on pri-miRNAs to modulate miRNA biogenesis in Arabidopsis thaliana (2020)
Journal Article
Bhat, S. S., Bielewicz, D., Gulanicz, T., Bodi, Z., Yu, X., Anderson, S. J., …Szweykowska-Kulinska, Z. (2020). mRNA adenosine methylase (MTA) deposits m6A on pri-miRNAs to modulate miRNA biogenesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 117(35), 21785-21795. https://doi.org/10.1073/pnas.2003733117

Copyright © 2020 the Author(s). Published by PNAS. In Arabidopsis thaliana, the METTL3 homolog, mRNA adenosine methylase (MTA) introduces N6-methyladenosine (m6A) into various coding and noncoding RNAs of the plant transcriptome. Here, we show that a... Read More about mRNA adenosine methylase (MTA) deposits m6A on pri-miRNAs to modulate miRNA biogenesis in Arabidopsis thaliana.

N6-methyladenosine inhibits local ribonucleolytic cleavage to stabilise mRNAs in Arabidopsis (2018)
Journal Article
Anderson, S. J., Kramer, M. C., Gosai, S. J., Liu, X., Vandivier, L. E., Nelson, A. D., …Gregory, B. D. (2018). N6-methyladenosine inhibits local ribonucleolytic cleavage to stabilise mRNAs in Arabidopsis. Cell Reports, 25(5), 1146-1157. https://doi.org/10.1016/j.celrep.2018.10.020

N6-methyladenosine (m6A) is a dynamic, reversible, covalently modified ribonucleotide that occurs predominantly toward 30 ends of eukaryotic mRNAs and is essential for their proper function and regulation. In Arabidopsis thaliana, many RNAs contain a... Read More about N6-methyladenosine inhibits local ribonucleolytic cleavage to stabilise mRNAs in Arabidopsis.

Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell (2004)
Journal Article
Waters, M., Fray, R., & Pyke, K. (2004). Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell

Stromules are motile extensions of the plastid envelope membrane, whose roles are not fully understood. They are present on all plastid types but are more common and extensive on non-green plastids that are sparsely distributed within the cell. Durin... Read More about Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell.