Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Automated algorithm design using proximal policy optimisation with identified features (2022)
Journal Article
Yi, W., Qu, R., & Jiao, L. (2023). Automated algorithm design using proximal policy optimisation with identified features. Expert Systems with Applications, 216, Article 119461. https://doi.org/10.1016/j.eswa.2022.119461

Automated algorithm design is attracting considerable recent research attention in solving complex combinatorial optimisation problems, due to that most metaheuristics may be particularly effective at certain problems or certain instances of the same... Read More about Automated algorithm design using proximal policy optimisation with identified features.

Cooperative Double-Layer Genetic Programming Hyper-Heuristic for Online Container Terminal Truck Dispatching (2022)
Journal Article
Chen, X., Bai, R., Qu, R., & Dong, H. (2023). Cooperative Double-Layer Genetic Programming Hyper-Heuristic for Online Container Terminal Truck Dispatching. IEEE Transactions on Evolutionary Computation, 27(5), 1220-1234. https://doi.org/10.1109/TEVC.2022.3209985

In a marine container terminal, truck dispatching is a crucial problem that impacts on the operation efficiency of the whole port. Traditionally, this problem is formulated as an offline optimisation problem, whose solutions are, however, impractical... Read More about Cooperative Double-Layer Genetic Programming Hyper-Heuristic for Online Container Terminal Truck Dispatching.

An Efficient Federated Distillation Learning System for Multitask Time Series Classification (2022)
Journal Article
Xing, H., Xiao, Z., Qu, R., Zhu, Z., & Zhao, B. (2022). An Efficient Federated Distillation Learning System for Multitask Time Series Classification. IEEE Transactions on Instrumentation and Measurement, 71, https://doi.org/10.1109/TIM.2022.3201203

This paper proposes an efficient federated distillation learning system (EFDLS) for multi-task time series classification (TSC). EFDLS consists of a central server and multiple mobile users, where different users may run different TSC tasks. EFDLS ha... Read More about An Efficient Federated Distillation Learning System for Multitask Time Series Classification.

Automated Design of Metaheuristics Using Reinforcement Learning within a Novel General Search Framework (2022)
Journal Article
Yi, W., Qu, R., Jiao, L., & Niu, B. (2023). Automated Design of Metaheuristics Using Reinforcement Learning within a Novel General Search Framework. IEEE Transactions on Evolutionary Computation, 27(4), 1072-1084. https://doi.org/10.1109/TEVC.2022.3197298

Metaheuristic algorithms have been investigated intensively to address highly complex combinatorial optimisation problems. However, most metaheuristic algorithms have been designed manually by researchers of different expertise without a consistent f... Read More about Automated Design of Metaheuristics Using Reinforcement Learning within a Novel General Search Framework.

A Collaborative Learning Tracking Network for Remote Sensing Videos (2022)
Journal Article
Li, X., Jiao, L., Zhu, H., Liu, F., Yang, S., Zhang, X., Wang, S., & Qu, R. (2023). A Collaborative Learning Tracking Network for Remote Sensing Videos. IEEE Transactions on Cybernetics, 53(3), 1954-1967. https://doi.org/10.1109/TCYB.2022.3182993

With the increasing accessibility of remote sensing videos, remote sensing tracking is gradually becoming a hot issue. However, accurately detecting and tracking in complex remote sensing scenes is still a challenge. In this article, we propose a col... Read More about A Collaborative Learning Tracking Network for Remote Sensing Videos.