Skip to main content

Research Repository

Advanced Search

All Outputs (129)

Shape complexity and process energy consumption in electron beam melting: a case of something for nothing in additive manufacturing? (2016)
Journal Article
Baumers, M., Tuck, C., Wildman, R. D., Ashcroft, I., & Hague, R. J. (in press). Shape complexity and process energy consumption in electron beam melting: a case of something for nothing in additive manufacturing?. Journal of Industrial Ecology, https://doi.org/10.1111/jiec.12397

Additive manufacturing (AM) technology is capable of building up component geometry in a layer-by-layer process, entirely without tools, molds, or dies. One advantage of the approach is that it is capable of efficiently creating complex product geome... Read More about Shape complexity and process energy consumption in electron beam melting: a case of something for nothing in additive manufacturing?.

3D Printing of Biocompatible Supramolecular Polymers and their Composites (2016)
Journal Article
Hart, L. R., Li, S., Sturgess, C., Wildman, R. D., Jones, J. R., & Hayes, W. (in press). 3D Printing of Biocompatible Supramolecular Polymers and their Composites. ACS Applied Materials and Interfaces, 8(5), https://doi.org/10.1021/acsami.5b10471

A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica... Read More about 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

Three dimensional ink-jet printing of biomaterials using ionic liquids and co-solvents (2016)
Journal Article
Gunasekera, D. H., Kuek, S., Hasanaj, D., He, Y., Tuck, C., Croft, A. K., & Wildman, R. D. (2016). Three dimensional ink-jet printing of biomaterials using ionic liquids and co-solvents. Faraday Discussions, 190, 509-523. https://doi.org/10.1039/C5FD00219B

1-Ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) and 1-butyl-3-methylimidazolium acetate ([C4C1Im][OAc]) have been used as solvents for the dissolution and ink-jet printing of cellulose from 1.0 to 4.8 wt%, mixed with the co-solvents 1-butanol and... Read More about Three dimensional ink-jet printing of biomaterials using ionic liquids and co-solvents.

Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using x-ray computed tomography (2016)
Journal Article
Maskery, I., Aboulkhair, N., Corfield, M., Tuck, C., Clare, A., Leach, R. K., Wildman, R. D., Ashcroft, I., & Hague, R. J. (2016). Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using x-ray computed tomography. Materials Characterization, 111, https://doi.org/10.1016/j.matchar.2015.12.001

We used X-ray computed tomography (CT), microscopy and hardness measurements to study Al–Si10–Mg produced by selective laser melting (SLM). Specimens were subject to a series of heat treatments including annealing and precipitation hardening. The spe... Read More about Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using x-ray computed tomography.

An inverse method for determining the spatially resolved properties of viscoelastic–viscoplastic three-dimensional printed materials (2015)
Journal Article
Chen, X., Ashcroft, I., Wildman, R. D., & Tuck, C. (2015). An inverse method for determining the spatially resolved properties of viscoelastic–viscoplastic three-dimensional printed materials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2183), Article 20150477. https://doi.org/10.1098/rspa.2015.0477

A method using experimental nanoindentation and inverse finite-element analysis (FEA) has been developed that enables the spatial variation of material constitutive properties to be accurately determined. The method was used to measure property varia... Read More about An inverse method for determining the spatially resolved properties of viscoelastic–viscoplastic three-dimensional printed materials.

Design Framework for Multifunctional Additive Manufacturing: Placement and Routing of Three-Dimensional Printed Circuit Volumes (2015)
Journal Article
Panesar, A., Brackett, D., Ashcroft, I., Wildman, R. D., & Hague, R. J. (2015). Design Framework for Multifunctional Additive Manufacturing: Placement and Routing of Three-Dimensional Printed Circuit Volumes. Journal of Mechanical Design, 137(11), Article 111414. https://doi.org/10.1115/1.4030996

© 2015 by ASME. A framework for the design of additively manufactured (AM) multimaterial parts with embedded functional systems is presented (e.g., structure with electronic/electrical components and associated conductive paths). Two of the key stran... Read More about Design Framework for Multifunctional Additive Manufacturing: Placement and Routing of Three-Dimensional Printed Circuit Volumes.

Mechanical Properties of Ti-6Al-4V Selectively Laser Melted Parts with Body-Centred-Cubic Lattices of Varying cell size (2015)
Journal Article
Maskery, I., Aremu, A., Simonelli, M., Tuck, C., Wildman, R., Ashcroft, I., & Hague, R. (2015). Mechanical Properties of Ti-6Al-4V Selectively Laser Melted Parts with Body-Centred-Cubic Lattices of Varying cell size. Experimental Mechanics, 55(7), 1261-1272. https://doi.org/10.1007/s11340-015-0021-5

Significant weight savings in parts can be made through the use of additive manufacture (AM), a process which enables the construction of more complex geometries, such as functionally graded lattices, than can be achieved conventionally. The existing... Read More about Mechanical Properties of Ti-6Al-4V Selectively Laser Melted Parts with Body-Centred-Cubic Lattices of Varying cell size.

A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V (2015)
Journal Article
Hague, R., Tuck, C., Simonelli, M., Tuck, C., Aboulkhair, N. T., Maskery, I., Ashcroft, I., Wildman, R. D., & Hague, R. J. (2015). A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V. Metallurgical and Materials Transactions A, 46(9), 3842-3851. https://doi.org/10.1007/s11661-015-2882-8

The creation of an object by selective laser melting (SLM) occurs by melting contiguous areas of a powder bed according to a corresponding digital model. It is therefore clear that the success of this metal Additive Manufacturing (AM) technology reli... Read More about A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V.

Evolutionary topology optimization using the extended finite element method and isolines (2013)
Journal Article
Abdi, M., Wildman, R., & Ashcroft, I. (2014). Evolutionary topology optimization using the extended finite element method and isolines. Engineering Optimization, 46(5), 628-647. https://doi.org/10.1080/0305215X.2013.791815

This study presents a new algorithm for structural topological optimization of two-dimensional continuum structures by combining the extended finite element method (X-FEM) with an evolutionary optimization algorithm. Taking advantage of an isoline de... Read More about Evolutionary topology optimization using the extended finite element method and isolines.