Skip to main content

Research Repository

Advanced Search

All Outputs (11)

Modulation of the biological response to surfaces through the controlled deposition of 3D polymeric surfactants (2025)
Journal Article
Cuzzucoli Crucitti, V., Hajiali, H., Dundas, A. A., Jayawarna, V., Tomolillo, D., Francolini, I., Vuotto, C., Salmeron-Sanchez, M., Dalby, M. J., Alexander, M. R., Wildman, R. D., Rose, F. R. A. J., & Irvine, D. J. (2025). Modulation of the biological response to surfaces through the controlled deposition of 3D polymeric surfactants. Journal of Materials Chemistry B, 13(15), 4657-4670. https://doi.org/10.1039/d4tb01941e

Biomaterials play a crucial role in modern medicine through their use as medical implants and devices. However, they can support biofilm formation and infection, and lack integration with the surrounding human tissue at the implant site. This work re... Read More about Modulation of the biological response to surfaces through the controlled deposition of 3D polymeric surfactants.

Development of C. albican Anti-attachment Inkjet 3D Printing Ink, via High Throughput Screening (2025)
Presentation / Conference Contribution
Yong, L. X., Zhou, Z., Vallières, C., He, Y., Cuzzucoli Crucitti, V., Alexander, M. R., Avery, S., Wildman, R., & Irvine, D. (2024, August). Development of C. albican Anti-attachment Inkjet 3D Printing Ink, via High Throughput Screening. Presented at International Conference on Computational & Experimental Engineering and Sciences, Singapore, Singapore

The fungal pathogen Candida albicans (C. albicans) is particularly problematic for immunocompromised patients and those with medical implants. Introducing Candida-resistant medical devices could potentially reduce mortality rates from such infections... Read More about Development of C. albican Anti-attachment Inkjet 3D Printing Ink, via High Throughput Screening.

High resolution 3D printed biocatalytic reactor core with optimized efficiency for continuous flow synthesis (2024)
Journal Article
Attwood, S. J., Leech, D., He, Y., Croft, A., Hague, R. J., Irvine, D. J., Wildman, R. D., & Pordea, A. (2025). High resolution 3D printed biocatalytic reactor core with optimized efficiency for continuous flow synthesis. Chemical Engineering Science, 305, Article 121156. https://doi.org/10.1016/j.ces.2024.121156

3D printing has the potential to transform biocatalytic continuous flow reactor technology, where precise control of topology is essential for maximizing reactor performance. By embedding enzymatic catalysts in polymer hydrogel networks, continuous s... Read More about High resolution 3D printed biocatalytic reactor core with optimized efficiency for continuous flow synthesis.

Inkjet Printed Multifunctional Graphene Sensors for Flexible and Wearable Electronics (2024)
Journal Article
Wang, F., Heaton, C., Cottam, N., Austin, J., Im, J., Fromhold, T. M., Wildman, R. D., Hague, R. J. M., Tuck, C., Makarovsky, O., & Turyanska, L. (in press). Inkjet Printed Multifunctional Graphene Sensors for Flexible and Wearable Electronics. Advanced Electronic Materials, https://doi.org/10.1002/aelm.202400689

The exceptional electrical properties of graphene with high sensitivity to external stimuli make it an ideal candidate for advanced sensing technologies. Inkjet printing of graphene (iGr) can provide a versatile platform for multifunctional sensor ma... Read More about Inkjet Printed Multifunctional Graphene Sensors for Flexible and Wearable Electronics.

A multiscale optimisation method for bone growth scaffolds based on triply periodic minimal surfaces (2021)
Journal Article
Lehder, E. F., Ashcroft, I. A., Wildman, R. D., Ruiz-Cantu, L. A., & Maskery, I. (2021). A multiscale optimisation method for bone growth scaffolds based on triply periodic minimal surfaces. Biomechanics and Modeling in Mechanobiology, 20, 2085-2096. https://doi.org/10.1007/s10237-021-01496-8

Tissue engineered bone scaffolds are potential alternatives to bone allografts and autografts. Porous scaffolds based on triply periodic minimal surfaces (TPMS) are good candidates for tissue growth because they offer high surface-to-volume ratio, ha... Read More about A multiscale optimisation method for bone growth scaffolds based on triply periodic minimal surfaces.

Simultaneous Tracking of Pseudomonas aeruginosa motility in liquid and at the Solid-Liquid Interface Reveals Differential Roles for the Flagellar Stators (2019)
Journal Article
Hook, A. L., Flewellen, J. L., Dubern, J.-F., Carabelli, A., Zald, I. M., Berry, R. M., Wildman, R. D., Russell, N., Williams, P., & Alexander, M. R. (2019). Simultaneous Tracking of Pseudomonas aeruginosa motility in liquid and at the Solid-Liquid Interface Reveals Differential Roles for the Flagellar Stators. mSystems, 4(5), Article e00390-19. https://doi.org/10.1128/mSystems.00390-19

Bacteria sense chemicals, surfaces, and other cells and move toward some and away from others. Studying how single bacterial cells in a population move requires sophisticated tracking and imaging techniques. We have established quantitative methodolo... Read More about Simultaneous Tracking of Pseudomonas aeruginosa motility in liquid and at the Solid-Liquid Interface Reveals Differential Roles for the Flagellar Stators.

Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction (2017)
Journal Article
Parmenter, C. D. J., Hu, Q., Sun, X. Z., Parmenter, C. D., Fay, M. W., Smith, E. F., Rance, G. A., He, Y., Zhang, F., Liu, Y., Irvine, D., Tuck, C., Hague, R., & Wildman, R. (2017). Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction. Scientific Reports, 7(1), Article 17150. https://doi.org/10.1038/s41598-017-17391-1

© 2017 The Author(s). The fabrication of complex three-dimensional gold-containing nanocomposite structures by simultaneous two-photon polymerisation and photoreduction is demonstrated. Increased salt delivers reduced feature sizes down to line width... Read More about Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction.

3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release (2017)
Journal Article
Kyobula, M., Adedeji, A., Alexander, M. R., Saleh, E., Wildman, R. D., Ashcroft, I., Gellert, P. R., & Roberts, C. J. (2017). 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. Journal of Controlled Release, 261, 207-215. https://doi.org/10.1016/j.jconrel.2017.06.025

A hot melt 3D inkjet printing method with the potential to manufacture formulations in complex and adaptable geometries for the controlled loading and release of medicines is presented. This first use of a precisely controlled solvent free inkjet pri... Read More about 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release.

Surface microstructuring to modify wettability for 3D printing of nano-filled inks (2016)
Journal Article
Vafaei, S., Tuck, C., Ashcroft, I., & Wildman, R. D. (2016). Surface microstructuring to modify wettability for 3D printing of nano-filled inks. Chemical Engineering Research and Design, 109, https://doi.org/10.1016/j.cherd.2016.02.004

This paper investigates the effect of surface wettability on the cross-sectional profiles of printed nanofluid inks which can have a significant role on conductivity of printed lines that are used in the production of printed electronics. Glass subst... Read More about Surface microstructuring to modify wettability for 3D printing of nano-filled inks.

3D Printing of Biocompatible Supramolecular Polymers and their Composites (2016)
Journal Article
Hart, L. R., Li, S., Sturgess, C., Wildman, R. D., Jones, J. R., & Hayes, W. (in press). 3D Printing of Biocompatible Supramolecular Polymers and their Composites. ACS Applied Materials and Interfaces, 8(5), https://doi.org/10.1021/acsami.5b10471

A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica... Read More about 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V (2015)
Journal Article
Hague, R., Tuck, C., Simonelli, M., Tuck, C., Aboulkhair, N. T., Maskery, I., Ashcroft, I., Wildman, R. D., & Hague, R. J. (2015). A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V. Metallurgical and Materials Transactions A, 46(9), 3842-3851. https://doi.org/10.1007/s11661-015-2882-8

The creation of an object by selective laser melting (SLM) occurs by melting contiguous areas of a powder bed according to a corresponding digital model. It is therefore clear that the success of this metal Additive Manufacturing (AM) technology reli... Read More about A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V.