Skip to main content

Research Repository

Advanced Search

All Outputs (4)

Contributions from coherent and incoherent lattice excitations to ultrafast optical control of magnetic anisotropy of metallic films (2016)
Journal Article
Kats, V. N., Linnik, T. L., Salasyuk, A. S., Rushforth, A. W., Wang, M., Wadley, P., …Scherbakov, A. V. (2016). Contributions from coherent and incoherent lattice excitations to ultrafast optical control of magnetic anisotropy of metallic films. Proceedings of SPIE, 9835(98351Q), https://doi.org/10.1117/12.2238020

Spin-lattice coupling is one of the most prominent interactions mediating response of spin ensemble to ultrafast optical excitation. Here we exploit optically generated coherent and incoherent phonons to drive coherent spin dynamics, i.e. precession,... Read More about Contributions from coherent and incoherent lattice excitations to ultrafast optical control of magnetic anisotropy of metallic films.

Ultrafast changes of magnetic anisotropy driven by laser-generated coherent and noncoherent phonons in metallic films (2016)
Journal Article
Kats, V., Linnik, T., Salasyuk, A., Rushforth, A., Wang, M., Wadley, P., …Scherbakov, A. (2016). Ultrafast changes of magnetic anisotropy driven by laser-generated coherent and noncoherent phonons in metallic films. Physical Review B, 93(21), Article 214422. https://doi.org/10.1103/PhysRevB.93.214422

Ultrafast optical excitation of a metal ferromagnetic film results in a modification of the magnetocrystalline anisotropy and induces the magnetization precession. We consider two main contributions to these processes: an effect of noncoherent phonon... Read More about Ultrafast changes of magnetic anisotropy driven by laser-generated coherent and noncoherent phonons in metallic films.

Electrical switching of an antiferromagnet (2016)
Journal Article
Wadley, P., Howells, B., Železný, J., Andrews, C., Hills, V., Campion, R. P., …Jungwirth, T. (2016). Electrical switching of an antiferromagnet. Science, 351(6273), 587-590. https://doi.org/10.1126/science.aab1031

Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating cur... Read More about Electrical switching of an antiferromagnet.