Skip to main content

Research Repository

Advanced Search

All Outputs (6)

On the Microstructural Evolution and Failure Mechanism in Laser Powder Bed Fusioned Ti-6Al-4V during Low Cycle Fatigue at Room and Elevated Temperatures (2022)
Journal Article
Gupta, A., Bennett, C. J., Sun, W., & Neate, N. (2022). On the Microstructural Evolution and Failure Mechanism in Laser Powder Bed Fusioned Ti-6Al-4V during Low Cycle Fatigue at Room and Elevated Temperatures. Journal of Materials Research and Technology, 21, 4299-4319. https://doi.org/10.1016/j.jmrt.2022.10.141

Microstructural features and their evolution during cyclic deformation directly impact the low cycle fatigue (LCF) life of additively manufactured Laser Powder Bed Fusion (LPBF) Ti-6Al-4V. Tensile and strain controlled LCF tests were performed at roo... Read More about On the Microstructural Evolution and Failure Mechanism in Laser Powder Bed Fusioned Ti-6Al-4V during Low Cycle Fatigue at Room and Elevated Temperatures.

Highly Aligned Ni-Decorated GO–CNT Nanostructures in Epoxy with Enhanced Thermal and Electrical Properties (2022)
Journal Article
Hu, C., Zhang, H., Neate, N., Fay, M., Hou, X., Grant, D., & Xu, F. (2022). Highly Aligned Ni-Decorated GO–CNT Nanostructures in Epoxy with Enhanced Thermal and Electrical Properties. Polymers, 14(13), Article 2583. https://doi.org/10.3390/polym14132583

In this study, graphene oxide–carbon nanotubes nanostructures decorated with nickel nanoparticles (NiGNT) were prepared through the molecular-level-mixing method, followed by a reduction process, and then applied as reinforcements to enhance the epox... Read More about Highly Aligned Ni-Decorated GO–CNT Nanostructures in Epoxy with Enhanced Thermal and Electrical Properties.

Enhanced thermal and electrical properties by Ag nanoparticles decorated GO-CNT nanostructures in PEEK composites (2021)
Journal Article
Hu, C., Liu, T., Neate, N., Fay, M., Hou, X., Grant, D., & Xu, F. (2022). Enhanced thermal and electrical properties by Ag nanoparticles decorated GO-CNT nanostructures in PEEK composites. Composites Science and Technology, 218, Article 109201. https://doi.org/10.1016/j.compscitech.2021.109201

A nanostructure of graphene oxide (GO) and carbon nanotubes (CNTs) decorated with silver nanoparticles (AgGNT) has been prepared via a molecular-level-mixing (MLM) method followed by a subsequent freeze-drying and reduction process. The obtained well... Read More about Enhanced thermal and electrical properties by Ag nanoparticles decorated GO-CNT nanostructures in PEEK composites.

Electric Field Induced Biomimetic Transmembrane Electron Transport Using Carbon Nanotube Porins (2021)
Journal Article
Hicks, J. M., Yao, Y.-C., Barber, S., Neate, N., Watts, J. A., Noy, A., & Rawson, F. J. (2021). Electric Field Induced Biomimetic Transmembrane Electron Transport Using Carbon Nanotube Porins. Small, 17(32), Article 2102517. https://doi.org/10.1002/smll.202102517

Cells modulate their homeostasis through the control of redox reactions via transmembrane electron transport systems. These are largely mediated via oxidoreductase enzymes. Their use in biology has been linked to a host of systems including reprogram... Read More about Electric Field Induced Biomimetic Transmembrane Electron Transport Using Carbon Nanotube Porins.

Toward Mid-Infrared, Subdiffraction, Spectral-Mapping of Human Cells and Tissue: SNIM (Scanning Near-Field Infrared Microscopy) Tip Fabrication (2015)
Journal Article
Neate, N., Fay, M., Parmenter, C., Athanasiou, G. S., Ernst, J., Furniss, D., …Seddon, A. B. (2016). Toward Mid-Infrared, Subdiffraction, Spectral-Mapping of Human Cells and Tissue: SNIM (Scanning Near-Field Infrared Microscopy) Tip Fabrication. Journal of Lightwave Technology, 34(4), 1212-1219. https://doi.org/10.1109/JLT.2015.2496786

Scanning near-field infrared microscopy (SNIM) potentially enables subdiffraction, broadband mid-infrared (MIR:3–25-μm wavelength range) spectral-mapping of human cells and tissue for real-time molecular sensing, with prospective use in disease diagn... Read More about Toward Mid-Infrared, Subdiffraction, Spectral-Mapping of Human Cells and Tissue: SNIM (Scanning Near-Field Infrared Microscopy) Tip Fabrication.