Skip to main content

Research Repository

Advanced Search

All Outputs (7)

Optimised hybrid shielding and magnetic field control for emerging quantum technologies (2021)
Presentation / Conference Contribution
Hobson, P. J., Packer, M., Holmes, N., Davis, A., Patel, P., Holmes, D., Harrison, R., Chalmers, J., Styles, B., Woolger, D., Sims, D., Brookes, M. J., & Fromhold, T. M. (2021, September). Optimised hybrid shielding and magnetic field control for emerging quantum technologies. Presented at SPIE PHOTONEX, Glasgow, United Kingdom

The accurate control of magnetic fields is a cornerstone of multiple emerging quantum technologies. These technologies often require passive high permeability magnetic shielding and internal active field-generating coils to create their own bespoke m... Read More about Optimised hybrid shielding and magnetic field control for emerging quantum technologies.

Practical real-time MEG-based neural interfacing with optically pumped magnetometers (2021)
Journal Article
Wittevrongel, B., Holmes, N., Boto, E., Hill, R., Rea, M., Libert, A., …Brookes, M. J. (2021). Practical real-time MEG-based neural interfacing with optically pumped magnetometers. BMC Biology, 19(1), Article 158. https://doi.org/10.1186/s12915-021-01073-6

Background: Brain-computer interfaces decode intentions directly from the human brain with the aim to restore lost functionality, control external devices or augment daily experiences. To combine optimal performance with wide applicability, high-qual... Read More about Practical real-time MEG-based neural interfacing with optically pumped magnetometers.

Magnetic Field Mapping and Correction for Moving OP-MEG (2021)
Journal Article
Mellor, S., Tierney, T. M., O'Neill, G. C., Alexander, N., Seymour, R. A., Holmes, N., …Barnes, G. R. (2022). Magnetic Field Mapping and Correction for Moving OP-MEG. IEEE Transactions on Biomedical Engineering, 69(2), 528-536. https://doi.org/10.1109/TBME.2021.3100770

Background: Optically pumped magnetometers (OPMs) have made moving, wearable magnetoencephalography (MEG) possible. The OPMs typically used for MEG require a low background magnetic field to operate, which is achieved using both passive and active ma... Read More about Magnetic Field Mapping and Correction for Moving OP-MEG.

Precision magnetic field modelling and control for wearable magnetoencephalography (2021)
Journal Article
Rea, M., Holmes, N., Hill, R. M., Boto, E., Leggett, J., Edwards, L. J., …Brookes, M. J. (2021). Precision magnetic field modelling and control for wearable magnetoencephalography. NeuroImage, 241, Article 118401. https://doi.org/10.1016/j.neuroimage.2021.118401

Optically-pumped magnetometers (OPMs) are highly sensitive, compact magnetic field sensors, which offer a viable alternative to cryogenic sensors (superconducting quantum interference devices – SQUIDs) for magnetoencephalography (MEG). With the promi... Read More about Precision magnetic field modelling and control for wearable magnetoencephalography.

Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system (2021)
Journal Article
Brookes, M. J., Boto, E., Rea, M., Shah, V., Osborne, J., Holmes, N., …Bowtell, R. (2021). Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system. NeuroImage, 236, Article 118025. https://doi.org/10.1016/j.neuroimage.2021.118025

The optically pumped magnetometer (OPM) is a viable means to detect magnetic fields generated by human brain activity. Compared to conventional detectors (superconducting quantum interference devices) OPMs are small, lightweight, flexible, and operat... Read More about Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system.